• Title/Summary/Keyword: full scale test

Search Result 1,165, Processing Time 0.026 seconds

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie using Small Scale Derailment Simulator (소형탈선시뮬레이터 상에서의 1/5 축소대차의 안정성 해석)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1905-1913
    • /
    • 2011
  • The dynamic characteristic of bogie that is driving system of railway vehicle is very important regarding decision of vehicle characteristics as running safety and comport. The dynamic characteristic test of bogie is tested on full size in place on field testing on track. But, the testing on the full size caused many problems. To overcome these problem by full size test, the Railway Safety Research Center in Seoul National University of Science & Technology developed 1/5 scale size of small scale derailment simulator and is currently testing running stability of 1/5 scaled bogie. Also To take effectively advantage of running stability test using small scale derailment simulator in actuality design and reliability estimation, it is necessary comparison and examination with field test and theoretical analysis result In this paper. to achieve running stability analysis of 1/5 scaled bogie on small scale derailment. the program using MATLAB that is fast compose and analysis the motion equation of Saemaul power bogie is developed. It is achieved analysis according to various specification (weight, size, suspension, etc..) and is evaluated corelation between test result and dynamic characteristic of actual railway vehicle.

  • PDF

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

Structural Analysis for 4-Seater Canard Airplane (4인승 선미익기 구조해석)

  • Kim, Sung-Joon;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.35-39
    • /
    • 2007
  • In this paper, we have presented structural analysis procedure and full scale test results for 4-seater canard airplane. Construction of the finite element model is critical path for the aircraft structural analysis and directly affects the structural integrity. The refinement of the finite element model should be determined depending on full scale test results. From the results of the structural analysis, 5 design limit loads test conditions and 11 design ultimate loads test conditions were selected. By the presented procedure, the structural integrity of 4-Seater Canard Airplane is successfully obtained.

  • PDF

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.

Designs and Tests for the Vibration Control of Full-Scale Steel Frame Structure with Added Viscoelastic Dampers (실 구조물 진동제어를 위한 점탄성 댐퍼 설계 및 적용 실험)

  • Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Kim, Young-Chan;Park, Jin-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.687-692
    • /
    • 2002
  • In order to verify the effectiveness of adding visooelastic dampers to full-scale steel frame structure on the reduction of their seismic and wind response a experimental work was carried out. First, The test was conducted on the VE dampers subjected to sinusoidal excitations under a variety of ambient temperatures, frequency, and the damper strain. Results from these tests showed that the viscoelastic dampers have high energy dissipation capacity. Second, The vibration tests was conducted of the full-scale steel frame structure with md without added VE dampers at different temperatures. Viscoelastically damped full-scale structure test result on the effect of ambient temperature show that viscoelastic dampers are very effective in reducing excessive vibration of the structure due to sinusoidal excitation over a wide ringe of ambient temperature.

  • PDF

Wind tunnel tests on flow fields of full-scale railway wind barriers

  • Su, Yang;Xiang, Huoyue;Fang, Chen;Wang, Lei;Li, Yongle
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.171-184
    • /
    • 2017
  • The present study provides a deeper understanding of the flow fields of a full-scale railway wind barriers by means of a wind tunnel test. First, the drag forces of the three wind barriers were measured using a force sensor, and the drag force coefficients were compared with a similar scale model. On this basis, the mean wind velocity and turbulence upwind and downwind of the wind barriers were measured. The effects of pore size and opening forms of the wind barrier were discussed. The results show that the test of the scaled wind barrier model may be unsafe, and it is suitable to adopt the full-scale wind barrier model. The pore size and the opening forms of wind barriers have a slight influence on the flow fields upwind of the wind barrier but have some influences on the flow fields and power spectra downwind of the wind barrier. The smaller pore size generates a lower turbulence density and value of the power spectrum near the wind barrier, and the porous wind barriers clearly provide better shelter than the bar-type wind barriers.

Full Scale Model Test on Channel Type PC Bridge (찬넬형 PC교의 실물실험 연구)

  • 구민세;황윤국;조현준;유영찬;김정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.89-94
    • /
    • 1990
  • This study was performed to verify the behavior of channel type PC bridge through the full scale model test. It is well known that the behavior of connection is especially important in case of precast multi-beam bridges. In this study, the lateral load distribution capacity was found satisfactory and influenced little either by the type or strength of connections. Analysis results agreed well with test results. Parameter studies were performed based on the test and analysis results.

  • PDF