• Title/Summary/Keyword: full scale model

Search Result 876, Processing Time 0.03 seconds

A Study of Dynamic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 동적 거동 특성 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.369-378
    • /
    • 2024
  • Purpose: This study aims to verify structural stability by manufacturing a 40m full-scale specimen composed of a segmental U-shaped PSC girder with integrated tensioning systems and a concrete slab, proceeding dynamic behavior tests, and compare the results of the tests with the results of numerical analysis. Method: Dynamic behavior tests were conducted on a full-scale, undamaged specimen using an impact hammer, and the natural frequency and damping ratio were measured and compared with numerical analysis techniques and the general damping ratio of the facilities. Result: The natural frequency of the numerical analysis model consisting of a girder and slab composite section was calculated to be 2.561Hz, the natural frequency of the full-scale specimen was measured to be 2.670Hz, and the damping ratio was calculated to be 0.42~0.68%. Conclusion: The natural frequency of the full-scale specimen was found to be 4.3% larger than that of the numerical analysis model. Since the masses of the full-scale specimen and the numerical analysis model are the same as 99.97%, it can be derived that the stiffness of the full-scale specimen has secured structural safety and stability. As a result, the dynamic behavior stability of the specimen was verified. The measured damping ratio of 0.42~0.68% was found to be a stable dynamic behavior compared to the PSC structures damping ratio of 0.5~1.0% in the elastic region.

A Study on the Estimation of the Effective Wake Ratio for ONR Tumblehome by the Numerical Analysis (수치해석을 활용한 ONR Tumblehome의 유효반류비 추정에 관한 연구)

  • Lee, Jun-Hee;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • This paper carried out numerical analysis for estimating the propulsion performance of the model scale ONRT benchmark model of'Tokyo 2015 a workshop on CFD'. The method reflecting the scale effect of ITTC'78 method and form factor were used to compare the estimates of the effective wake ratio of full-scale. The numerical calculation was performed with Siemens's Star-CCM+, compared with IIHR model tests and the numerical analysis results of other research institutes, showing good agreement. In the case of an open stern and twin skeg ship, the validity of the ITTC'78 method can be confirmed by assuming that the effective wake ratio estimated from the numerical analysis results of model scale is similar to the effective wake ratio of full-scale.

Vibrational Characteristics of the Deteriorated Railway Plate Girder Bridge by Full-scale Experimental Modal Analysis (Full-scale 실험 모드해석을 이용한 노후화된 철도판형교의 진동특성)

  • Kim, Joo-Woo;Jung, Hie-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.119-128
    • /
    • 2012
  • In this study, experimental vibration tests are performed on a real full-scale railway steel plate girder bridge, which resides in open-space environments. Using experimental modal analysis techniques, the modal parameters of the railway steel plate girder bridge yielded by the modal testing of the impact hammer are compared and investigated with the natural frequencies and mode shapes obtained by finite element analysis. This work focuses on the application of model updating techniques to measured experimental data and output-only data from an analytical vibration study that takes into account various geometric and material properties of the bridge members. A finite element model of the railway bridge structure is used to verify the modal experimental results. It is subsequently updated using the corresponding modal identification technique. The basic database is provided to evaluate damage, which can be determined based on the changes in the element properties, resulting from the process of updating the finite element model benchmark and experimental data.

An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room (Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Jeong, Seong-Yeob;Seo, Young-Kyo;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.

Stability Evaluation of the Railway Bogie According to the Tread Inclination of Wheel Profile Using Scale Model (축소모델을 이용한 차륜답면형상 답면구배에 따른 안정성 평가)

  • Hur, Hyun-Moo;You, Won-Hee;Kim, Nam-Po;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1099-1107
    • /
    • 2009
  • Numerical simulation and experimental study to evaluate the critical speed of the railway bogie according to the tread inclination of wheel profile were conducted using 1/5 scale model. It has been shown that the results of the critical speed analysis for the scale bogie model is very close to the test results using scale bogie model and the critical speed is decreased in proportion to the increase of equivalent conicity of wheel profile. Results of this study show that the scale model could be applied to research area relating to vehicle stability as an alternative to overcome the experimental problems caused by full scale test on the roller rig.

Pyroshock Prediction of the Satellite Launch Vehicle at the Payload Fairing Separation (인공위성 발사체 노즈페어링 분리 시 구조물의 충격량 예측)

  • Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon;Lee, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.250-253
    • /
    • 2005
  • This paper is investigates the separation shock of payload fairing. Separation test of subscale PLF using half separation device and half PLA is performed. Resulting shock loads at equipment bay and fairing joint are measured. Pyroshock estimation is performed using AUTOSEA Pyroshock Module. Input data to analysis model is obtained from the separation test results of subscale PLF. And model of AUTOSEA is updated comparing results between tests and analysis.. This enables us to validate the AUTOSEA model. Tuned model of subscale PLF and separation device is used to update full scale model, and the shock analysis result of full scale model is estimated in this paper. This paper also discusses the results regarding the difficulty of structural modeling and its numerical implementation in AutoSEA2 Software.

  • PDF

Development of a Dynamically Scaled Model of the Catenary for High Speed Railway (고속전철 가선계의 축소모델 개발에 관한 연구)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.409-413
    • /
    • 2007
  • A dynamically scaled model of the catenary with a nominal scaling factor of 18.5:1 is designed and constructed. The motivation for developing such a model is the great difficulty of making accurate measurements on the full-scale catenary and the difficulty of making experimental modifications to it. The scaled model is designed to be dynamically equivalent to the full scale catenary with respect to the mass and elastic strength. The scaled model is partially verified by comparing linear vibration and wave characteristics with those predicted by the simulation study.

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.

Dynamic Experiment of a Full-Scale Five-story Steel Building with Viscoelastic Dampers (점탄성 감쇠기가 설치된 실물크기 5층 철골건물의 진동실험)

  • 민경원;이영철;이상현;박민규;김두훈;박진일;정정교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.239-246
    • /
    • 2002
  • Viscoelastic dampers are known effective devices for response reduction under earthquakes and winds. This study addresses how to design the optimum viscoelastic dampers installed at the full scale five-story steel building and novel approach to carry out the experimental work to verify the damper performance. First, an exciter of hybrid mass-type actuator is designed, which can move the building and its mathematical model is derived. The integrated system of building-actuator is experimentally analyzed for mathematical model. Second, convex model is applied for the prediction of required additional damping ratios to reduce responses below a specified target level. Chevron-type viscoelastic dampers are manufactured and installed at the first and second inter-stories, which are optimum places for response reduction. Sine-sweep and white noise excitations, which are generated by the hybrid mass-type actuator, are applied to the full scale building without and with dampers for performance verification. The transfer function of the building with four dampers, two of them installed at each first and second inter-story, are found to be lower than that of the building with two dampers installed at the first inter-story

  • PDF