• Title/Summary/Keyword: full ratio

Search Result 1,285, Processing Time 0.03 seconds

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

A Joint SD-MRC Method for Downlink Performance Improvement at Coverage Boundaries of Cellular Systems (셀룰러 시스템의 셀 경계에서의 하향 링크 성능 향상을 위한 Joint SD-MRC 수신 방식)

  • Lee, Sang-Dae;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.506-514
    • /
    • 2008
  • At coverage boundaries of cellular systems including the recent WiBro standard which operate with full frequency reuse for increased spectral efficiency, interference signals from the base stations(BS) of adjacent cells degrade the receiver performance. In this paper, a detection method for multiple-antenna mobile stations(MS) is proposed for downlink performance improvement at coverage boundaries of cellular systems. For the performance verification, we obtain the probability density function(pdf) of the effective signal-to-interference and noise ratio(SINR) according to the variation of the interference signals from adjacent cells as well as the number of MS antennas, and calculate the transmission efficiency. We also verify the performance of proposed method with simulation results, to demonstrate a significant performance improvement is achieved over the maximal ratio combining(MRC) and spatial demultiplexing(SD) methods in terms of the effective SINR and the spectral efficiency.

Compensatory Growth of Juvenile Olive Flounder Paralichthys olivaceus during the Summer Season (하절기 넙치유어의 보상 성장)

  • Cho Sung-Hwoan
    • Journal of Aquaculture
    • /
    • v.19 no.2
    • /
    • pp.95-98
    • /
    • 2006
  • This study was performed to determine possibility of compensatory growth of juvenile olive flounder fed a commercial feed during the summer season. Five treatments of fish with triplicates were prepared: C, S1, S2, S3 and S4. Fish in the control group (C) was hand-fed with the commercial feed to apparent satiation twice daily for 6 days a week during 6 weeks. Fish in S1, S2, S3, and S4 experienced 1, 2, 3, and 4 weeks of starvation before fed to satiation twice daily for 5, 4, 3, and 2 weeks, respectively. The feeding trial lasted far 6 weeks. Survival of flounder in C, S1 and S2 was significantly (P<0.05) higher than that offish in S4. Weight gain and specific growth rate (SGR) of flounder in C and S1 were significantly (P<0.05) higher than those of fish in S2, S3 or S4. And weight gain and SGR of flounder in S2 and S3 were significantly (P<0.05) higher than those of fish in S4. Feed consumption of flounder tended to increase with weeks of feeding. Feed efficiency ratio and protein efficiency ratio for flounder in C, S1, S2 and S3 were significantly (P<0.05) higher than those for fish in S4. Moisture content of the whole fish in C was lowest, but highest for fish in S4, respectively. Crude protein content of the whole fish in C was highest, but lowest far fish in S4, respectively. Crude lipid content of the whole fish in C, S1 and S2 was significantly (P<0.05) higher than that of fish in S4. In conclusion, full compensatory growth was obtained in juvenile olive flounder fed for 5 weeks after 1-week feed deprivation during the summer season. Compensatory growth of fish was well supported by improvement in feed efficiency ratio and protein efficiency ratio.

Experimental Study on the Damping Estimation of the 5×5 Partial Fuel Assembly (5×5 부분핵연료 집합체의 감쇠추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.163-168
    • /
    • 2006
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle $(5\times5)$ which is called partial fuel assembly is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid to obtain the Flow-Induced Vibration (FIV) characteristics of the scaled fuel assembly over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the assembly prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the scaled test assembly. For the damping factor of the partial fuel assembly and the grid cage at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the partial fuel assembly is about $0.7\%$ with reasonable error of $2\%$ for the previous results. Nonlinear behavior of the partial fuel assembly might be stem mainly from the rod-grid support configuration.

Performance Evaluation of Frame Synchronization Using Pilot Patterns in W-CDMA System (W-CDMA 시스템의 파일럿 패턴을 이용한 프레임 동기 성능 분석)

  • Song Young-Joon;Kim Han-Mook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.272-279
    • /
    • 2006
  • In this paper, we evaluate the performance of frame synchronization words of pilot bit patterns which are used for the channel estimation and frame synchronization confirmation in W-CDMA(Wide band Code Division Multiple Access) system. W-CDMA system also uses compressed mode to make measurements from another frequency without a full dual receiver terminal. It is confirmed by using computer simulation that the proposed frame synchronization words also maintain the frame synchronization property in the compressed mode by using the complementary mapping relationship of preferred pair ROC(Receiver Operating Characteristic) curves with probability of detection and false alarm are used to analized the performance of the proposed frame synchronization words by using the various detection metrics such as LLRT(Log Likelyhood Ratio Test), GLRT(Generalied Likelyhood Ratio Test), soft and hard correlation tests in AWGN and Rayleigh fading channels. It is expected that the research results fer the performance of pilot bit patterns of this paper can be useful reference for the design and implementation of frame synchronization in 3rd generation W-CDMA system.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.

A Model Study on Development of Animal Wastes Treatment System for a Full-time Farm Household Raising Livestock (전업양축농가의 축분뇨처리시스템 개발을 위한 모형실험)

  • 최홍림;김현태;정영륜
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.16-26
    • /
    • 1993
  • A sundry system is one of popular systems for composting livestock manure, of which main honest is to utilize unlimited, clean, and free solar radiation. A sundry system with a composter of two horizontal screw-type concrete ducts at different height, was constructed and operated for three days for each test in May, 1993, to evaluate its composting performance. Four treatments of the mixture ratio of swine manure and saw dust (manure : sawdust= 1 : 1.25, 1 : 1, 1 : 0.7, 1 : 0.5) were implemented to evaluate the effect of the mixture ratio on degradation of the composting materials of a sundry system with a screw-type composter. Maximum temperature of the composting materials was over 5$0^{\circ}C$ at D1 or D2 (one or two days after operation starts) for each test. Mean C/N ratio and water contents of the materials were reduced by more than 15 and 20%, respectively. Microbial density of each test showed a typical variation with the lapse of the composting time. Mesophilic microorganism seemed to play more important role on degradation of the materials than thermophilic. A sundry system with a screw-type composter can be considered as a feasible system on basis of maturity data. The conclusion was completely reverse from that of Choi et at., although both adopted a sundry system. A further study is recommended to pursue the cause of better performance of the screw-type composter, whether it was due to affirmative weather or more efficient composter.

  • PDF

Experimental study on the damping estimation of the 5$\times$5 rod bundle (5$\times$5 봉다발의 감쇄추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.503-506
    • /
    • 2005
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle (5$\times$5) is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid like the coolant mixing performance and to obtain the Flow-Induced Vibration (FIV) characteristics of the rod bundle over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the bundle prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the small scaled test bundle. For the damping factor of the rod bundle and the grid case at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the rod bundle is about 0.7% with reasonable error of 2% for the previous results. Nonlinear behavior of the rod bundle might be stem mainly Iron the rod-grid support configuration.

  • PDF

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.