• Title/Summary/Keyword: full containment LNG tank

Search Result 23, Processing Time 0.018 seconds

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank System with Damping Safety Structures (댐핑안전 구조물을 고려한 완전밀페식 LNG 저장탱크 시스템의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the finite element analysis on the strength safety of a full containment LNG storage tank system with damping safety structures. For the FEM analysis of the inner tank, the combined loads in which are related to a hydrostatic pressure, a cryogenic temperature load, BOG pressure, LNG weight, and a sinking force at the comer of the inner tank have been applied to the inner tank structure. The FEM computed results show that the conventional inner tank is safe for the given combined loads, but the damping safety structure such as compressive springs may be more useful structures to increase the safety of the tank system. The increased stiffness and the appropriate position of the springs are very important design parameters for increasing the damping strength safety of the tank system.

  • PDF

A study on the safety improvement of above ground membrane LNG storage tank (상지상식 멤브레인 액화천연가스 저장탱크의 안전성 향상 방안)

  • Lee, Seung Rim;Kim, Han Sang
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2012
  • RMembrane LNG storage tanks have been recently investigated to replace full-containment LNG storage tanks because of safety and cost aspects. Quantitative Risk Analysis (QRA) and Finite Element Method (FEM) were used to evaluate safety of membrane LNG storage tanks. In this study, structural safety evaluation results via FEM analysis showed that both membrane type and full-containment type cryogenic LNG storage tanks with 140,000 $m^3$ capacity were equivalently safe in terms of strength safety and leakage safety of a storage tank system. Also, Fault Tree Analysis (FTA) was used to improve the safety of membrane LNG storage tanks and membrane LNG tanks were modified by adding three safety equipments: impact absorber structure for the low part of the membrane, the secondary barrier to diminish the thermal stress of the corner part of the outer tank, and a pump catcher in case of falling of a pump. Consequently, the safety of the modified membrane LNG storage tanks were proved to be equivalent to that of full-containment LNG storage tanks.

A Study on the Design Optimization of Corner Pprotection for LNG Storage Tank (LNG저장탱크 코너프로텍션의 설계 최적화에 관한 연구)

  • Kim, Hyung-Sik;Hong, Seong-Ho;Seo, Heung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1384-1390
    • /
    • 2004
  • The full containment Liquefied Natural Gas(LNG) storage tank is based on a double liquid container concept : two separate containers, one within the other, are capable of containing the LNG. The outer concrete tank provides comer protection(secondary containment) to withstand and safely contain any spill from the inner tank. The comer protection is installed on inside corner surface of outer concrete tank. Because of high and complex stresses, corner protection is designed by ASME section ⅧI Div. 2, Appendix 4 on behalf of API 620 which is main design code for LNG tank. Design guidelines to determine design factors such as liner thickness and knuckle radius are not well understood because Appendix 4 is the design method not based on equation but FEM. Recently, the volume of LNG tank shows a tendency to increase. So it is necessary to set up the design guidelines to cope with change of LNG tank capacity and height/diameter ratio. In this paper, optimum design of corner protection was performed and the design guidelines were suggested by the results of FEM for LNG tanks which have different capacities and height/diameter ratio.

Review about Thermal Stability Reinforcing Method of the Concrete Sidewall of the LNG Storage Tank Using Sprayed PUF (스프레이 PUF를 이용한 LNG 저장탱크 외조 벽체의 열적 안정성 강화 방법에 대한 고찰)

  • Lee, Yeongbeom;Choe, Keonhyeong;Yoon, Ihnsoo;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • LNG storage tank is a facility to store liquefied natural gas (LNG) and its safety and stability to be greatly needed. When there is a LNG leakage in case of primary container problem, a special facility such as a bund wall should be constructed to store the leaked LNG. But this method makes the land usage inefficient and construction price high. So nowadays the full containment type LNG storage tank is selected instead of constructing a bund wall. In the full containment type tank, the concrete sidewall has the ability to store LNG temporarily. There are largely two methods to give the concrete sidewall the ability. In a method, rebar should be used when constructing the side wall of the LNG storage tank. In the other method, the protecting material such as sprayed polyurethane foam should be applied on the inner surface of the concrete sidewall. Sprayed PUF keeps the temperature of the sidewall above the specified temperature during the specified periods. Recently the thermal stability reinforcing method using sprayed polyurethane foam has been applied to all LNG storage tank built in Korea.

Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications

  • Ryu, Min Cheol;Jung, Jun Hyung;Kim, Yong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2016
  • This paper addresses the safety of two-row tank design by performing the extensive sloshing model tests. Owing to the uncertainties entangled with the scale law transforming the measured impact pressure up to the full scale one, so called comparative approach was taken to derive the design sloshing load. The target design vessel was chosen as 230 K LNG-FPSO with tow-row tank arrangement and the reference vessel as 138 K conventional LNG carrier, which has past track record without any significant failure due to sloshing loads. Starting with the site-specific metocean data, ship motion analysis was carried out with 3D diffraction-radiation program, then the obtained ship motion data was used as 6DOF tank excitation for subsequent sloshing model test and analysis. The statistical analysis was carried out with obtained peak data and the long-term sloshing load was determined out of it. It was concluded that the normalized sloshing impact pressure on 230 K LNG-FPSO with two-row tank arrangement is higher than that of convectional LNG carrier, hence requires the use of reinforced cargo containment system for the sake of failure-free operation without filling limitation.

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank with Tension Steel Cables (인장강선을 사용한 완전방호식 LNG 저장탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.18-24
    • /
    • 2008
  • This paper presents the stress and deformation behaviors of 9% nickel steel inner tank in a full containment LNG storage tank using a FE analysis. For an increased strength safety of an inner tank, the tension cable was fastened around the outside wall of an inner tank, which is known as a weak zone for the hydrostatic pressures, cryogenic temperature loads, and other loadings. Based on the FEM computed results between a conventional inner tank and a inner tank with tension cables around the lower part of the side wall of an inner tank, the redesigned inner tank is more safe than that of the conventional tank without a tension cable. The FEM results recommend $3{\sim}4$ steel tension cables with a diameter of 50mm for an increased strength safety of the inner tank, which may decrease the stress concentration and deformation near the lower part of the side wall. Thus the tension cable around the inner tank may be used as an alternative safety device compared to the stiffener and the top girder structures for the increased LNG storage tank, especially.

  • PDF

Advanced Heat Transfer Analysis Model of LNG Storage Tank (LNG 저장탱크의 개선된 온도해석 모델)

  • 전세진;정철헌;진병무;김성운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.115-120
    • /
    • 2003
  • Several methodologies were devised to reasonably predict the temperature boundary conditions of inner face of the concrete outer tank so as to set up heat transfer analysis model of the full containment above-ground LNG storage tank. In this model, outer tank is solely taken into account and the beneficial effect of suspended deck and insulation layers on the temperature distribution of outer tank is separately formulated according to the proposed procedures. More effective design of the insulations can be achieved when the proposed simple schemes are used in the preliminary stage.

  • PDF

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.