• Title/Summary/Keyword: fuel-air mixing

Search Result 312, Processing Time 0.022 seconds

Fuel Distribution Measurements in ATR Combustor using PLIF (PLIF를 이용한 ATR 연소기 내부의 연료분포 측정)

  • Yang In-Young;Jin You-In;Yang Soo-Seok;Park Seung-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.274-277
    • /
    • 2004
  • Fuel/air mixing in air turbo ramjet(ATR) combustor is a significant parameter of combustion stability and efficiency. In this study, fuel distribution in the ATR model combustor was measured to compare the degree of mixing with respect to the velocity ratio$(r=v_a/v_f)$ between fuel gas and air. Planar laser-induced fluorescence(PLIF) and image processing method were used to obtain two dimensional fuel distribution. Fuel mixing went bad with approaching to r=1.

  • PDF

Numerical Investigation on Cavity-Enhanced-Supersonic Combustion Engine of Upstream Fuel Injection in Cavity (공동내부 연료분사방식 초음속 연소기의 수치해석 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.35-39
    • /
    • 2003
  • A numerical study is carried out to investigate combustion phenomena in a model SCRamjet engine, which has been experimentally studied at the Australian National University using a T3 free-piston shock tunnel. The Mach number is 3.8, the static pressure 110kPa and the static temperature 1100K in the main air flow. The fuel is hydrogen, which is injected in the cavity. Equivalence ratio is set to either 0.25 or 0.5 to access its effect on the fuel-air mixing combustion phenomena. The results show that the cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs near the point of fuel injection. The flame is anchored by the cavity and generates the precombustion shock on the step. For a high equivalence ratio, the recirculation zones are bigger and the flame is present throughout the combustor.

  • PDF

Mixed Structure Effect of Fuel and Air on Rotary Kiln Burner Flame (연료 및 공기의 혼합구조가 로타리 킬른 용 버너 화염에 미치는 영향)

  • Kim, Youngho;Lee, Cheolwoo;Kim, Insu;Lim, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.339-342
    • /
    • 2014
  • Rotary kiln produces lime from limestone through thermal decomposition. Ring formation in kiln internal wall is known issue that decreases productivity. The cause of ring formation is temperature imbalance as flame leans toward upper wall. Therefore, burner nozzle geometry was changed to improve air-fuel mixing state which leads to prevention of ring formation. CFD simulation and experimental test were performed in this study to investigate the effect of air-fuel mixing on flame structure, temperature and $NO_X$ concentration. It is shown that combustion efficiency has been enhanced and $NO_X$ concentration has been decreased by using swirl flow for secondary combustion air. It's also shown that flame has been straightened by using straight flow for secondary combustion air.

  • PDF

Numerical Analysis of Supersonic Combustion Flows according to Fuel Injection Positions near the Cavity (공동주위 분사위치에 따른 초음속 연소 유동해석)

  • Jeong Eunju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.368-373
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the mixing enhancement combustion phenomena according to fuel injector location near the cavity in supersonic flow. Fuel injector location changes the actual length to depth ratio of the cavity in the supersonic combustor. Therefore fuel injector location near the cavity effects different fuel/air mixing efficiency and combustion efficiency.

  • PDF

Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio (연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구)

  • Hwang, Yu-Hyeon;Jung, Dong-Ho;Kim, Sun-Min;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.835-841
    • /
    • 2010
  • The design of the fuel injector is one of the important operating factors that determine the extent of mixing of air and fuel in an MEMS gas turbine engine. In this study, we consider a system with three inlet ports with each port having multiple injectors. We perform a parametric study by varying the arrangement of fuel injectors and difference of ratio of fuel supply. The results are presented in terms of the premixed flow distribution and equivalence ratio.

The Numerical Analysis Study about the Air-Fuel Mixing Characteristics by the Change on the 3D Cavity Size (3차원 Cavity 크기 변화에 의한 공기-연료 혼합특성의 수치적 해석 연구)

  • Seo, Hyung-Seok;Jeon, Young-Jin;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.93-98
    • /
    • 2007
  • The air velocity flowing in inner combustion chamber of SCramjet is supersonic and the time of its stay is very short as a few milliseconds. Within this short time, fuel injection, air-fuel mixing, and combustion process should be accomplished. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for mixing characteristics. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. 3 different sized cavities of the same length-height ratio were used in order to recognize the effect about cavity size. Also, the case without cavity was analyzed to find the effect of cavity. Used code compared with the result of experiment under identical conditions and it was verified. Through this comparison and verification, mixing enhancement by cavity size could be confirmed.

  • PDF

Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software (전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

Measurement of the fuel distribution in a scaled ATR combustor using PLIF (PLIF를 이용한 ATR 연소기 축소모형의 연료분포 측정연구)

  • Jin Yu-In;Yang In-Young;Choi Young-Hwan;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-65
    • /
    • 2005
  • Mixing performance between fuel and oxidizer is a significant parameter of combustion efficiency and stability in an air-turbo ramjet combustor. Two types of petal mixer were experimented to research the mixing performance. Mixing performance and fuel distribution images were obtained for petal mixers. Planar laser-induced fluorescence(PLIF) was used to obtain 2-D fuel distribution. The obtained images were processed in order to make use of the image information to a quantitative level. The results of analyzing the fluorescence images could be useful to find better mixing performance between mixers.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • The flow of combustor in scramjet engine has supersonic speed so that the residence time and mixing ratio are very important factors for the efficient combustion. This study used open cavity(L/D=4.8) as a fuel/air mixing model. Laser schlieren visualization and pressure measurement were carried out to observe the flow characteristics around a jet orifice and a cavity at the time of fuel injection. As a result of 10ns laser schlieren, unsteady flow which was around the cavity could be observed effectively. Pressure was measured that momentum flux ratio(J) was changed. And the change of critical ignition point could be observed by the momentum flux ratio changed.

A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel (2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.