• Title/Summary/Keyword: fuel oil C

Search Result 290, Processing Time 0.024 seconds

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process (연속공정에 의한 식물유의 바이오디젤유 전환)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • Transesterfication of vegetable oils and methanol with alkaline catalyst was carried out to produce biodiesel fuel by continuous process. The process consists of two static mixers, one tubular reactor and two coolers and gave $96{\sim}99$% of methyl ester yield from soybean oil and rapeseed oil. Experimental variables were the molar ratios of methanol to vegetable oil, alkaline catalyst contents, flow rates, mixer element number. The optimum ranges of operating variables were as follows; reaction temperature of $70^{\circ}C$, l:6 of molar ratio of methanol to oil, O.4%(w/w) sodium hydroxide based on oil, static mixer elements number of 24 and 4 min. residence time.

Recovery of Available Resource from Waste Polymer using Thermal Degradation Process (고분자 폐가물의 열분해공정에서 유효자원의 회수)

  • 김형진;정수경;홍인권
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2000
  • Commercial rubber(IR, NR, BR), SBR, and tire were degraded by thermal degradation process. The oil yield of rubbers and tire ranges about 37~86%, it was increased with increase of operation temperature in pyrolysis. And the yield of pyrolytic oil was increased with increase of heating rate. The maximum oil yields of IR, NR, BR, SBR, and tire were 80, 73, 83, 86 and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C$/min, respectively. The pyrolytic oil components were consisted of about 50 aromatic compounds. The calorific value of purolytic oil of commercial rubber, SBR, and tire was measured by calorimeter, it was 39~40 kJ/g. The BET surface area of pyroblack was $47~63m^2/g$. The optimum condition of pyrolysis was operating temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$. Therefore, the pyrolytic oil and pyroblack are possible to alternative fuel and carbon black.

  • PDF

Manrfacturing Process of Solid Fuel Using Food Wastes and Paper Sludges (음식물 쓰레기와 제지슬러지를 이용한 고체연료 제조)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2010
  • Dry Process(natural drying, hot-air drying, oil fry drying), optimized mixture ratio and the condition of carbonization was carried out in order to improve the product durability develop eco-friendly solid fuel mixing food waste and paper sludge. As a result of the experiment, oil fry drying process was the fastest method for drying food waste and paper sludge mixture that contains 80% water inside, and the optimized mixture ratio to minimize the generating concentration of chlorine gas against caloric value of mixture ratio was 7:3. Additionally proper temperature of product carbonization was about $200^{\circ}C$ and shown increasing product durability through the carbonization. Therefore, the pelletized solid fuel be shaped diameter around 0.5cm, length 2cm under which was pulverized and molded using 7:3 mixture of food waste, and paper sludge was the eco-friendly solid fuel possible to be industrialized which is consist of chlorine concentration of below 2.0wt% and the lowest caloric value of over 5,000kcal/kg. In conclusion, this developing manufacturing process of the solid fuel can be interpreted to contribute alternative energy development in accordance with low carbon and green growth era.

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.

Catalytic Cracking of Pyrolysed Waste Lube-oil Into High Quality Fuel Oils Over Solid Acid Catalysts (고체산 촉매를 이용한 페윤활유 열분해유의 고급연료유화 특성 연구)

  • 박종수;윤왕래;고성혁;김성현
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.248-255
    • /
    • 1999
  • Catalytic cracking of pyrolysed waste lubricating oil over solid acid catalysts (HY zeolite, ${\beta}$-zeolite, HZSM-5) has been carried out in a micro-fixed bed system. The feed oil for catalytic activity tests has been prepared by thermal cracking of waste lubricating oil under the reaction conditions of 480$^{\circ}C$, 60 min. Optimum reaction conditions for the maximum light oil yields($\_$21/) were WHSV(weight hourly space velocity)=1 at 375$^{\circ}C$. The amounts of total and strong acid sites appeared to be the largest in ${\beta}$-zeolite as determined by NH$_3$, TPD. It is seen that the catalytic activity order, in terms of the light fuel oil ($\_$21/) production, were HY zeolite)${\beta}$-zeolite>HZSM-5. Also, coke formation followed the same order. The highest activity in HY zeolite may be attributed from the fact that it has supercages facilitating the easy diffusion of larger molecules and also the effectiveness of the acid sites for cracking within the pore. This fact could be confirmed by the coke formation characteristics.

  • PDF

Plant morphological symptom caused by simulated acidic rain made by fuel gases (排氣가스로 만든 人工酸性雨에 의한 植物의 形態的 症狀)

  • Chang, Nam-Kee;Yun-Sang Lee;Soo-Jin Yi
    • The Korean Journal of Ecology
    • /
    • v.16 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • We investigated the ph change of water caused by several fuel gases regarded as the main cause of the air pollution, To find out the main cause of increase of the acidity of the rain. We measured it while injrcting each fuel gas directiy to the distilled water. It was observed that bunker-c oil gas and anthracite coal gas were the main cause to make the ph of the solution lowest. We examined the effects of simulated acidic water solutions on several plant species. Simulated acidic rain made by bunker-c oil gas has significant symptom on the saxifraga stolonifera and commelina communis, while no injury was observed on plants exposed to simulated rainfall made by anthracite coal gas.

  • PDF

NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate (열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구)

  • Kwak, Cheol Hwan;Seo, Sang Wan;Kim, Min Il;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • In this study, a sensor for detection of nitric oxide (NO) gas was developed using petroleum pitch-based activated carbon which was synthesized from pyrolysis fuel oil (PFO). Polyethylene terephthalate (PET) was added to increase molecular weight by stimulating a polymerization of components in PFO during the pitch synthesis process. The increase in the molecular weight of pitch contributed to the improvement of textural properties of activated carbon, such as the specific surface area and micropore volume. It also enhanced the sensitivity of NO gas sensor based on the activated carbon. In addition, the effect of PET addition during the pitch synthesis on the surface oxygen content and conductivity of activated carbon was investigated. Finally, the correlation of the sensitivity with physical properties of activated carbon was analyzed.

Experimental Study on Fuel Consumptions of LPG Vehicle Depending on the Atmospheric Temperature, Vaporizer Gas Leakage, Engine Oil and Engine Loads (대기온도, 증발기 누출, 엔진오일 및 엔진부하에 따른 LPG 차량의 연비실험에 관한 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents the fuel consumption effects of LPG vehicle depending on the atmospheric temperature, LP gas leakage of vaporizer, viscosity of engine oil and engine load conditions. The fuel consumption test results show that when the temperature of engine temperature rises, the fuel consumption efficiency increases in general. The fuel consumption efficiency for an atmosphere temperature of $24.2^{\circ}C$ is 13.6% high compared to that of $1^{\circ}C$. No leak vaporizer on fuel consumption efficiency is 5.3% high compared to that of the LP gas leak vaporizer. The fuel economy of new engine oils is just 1.1% high compared to that of used oils with a LPG vehicle mileage of 9,500km. This is not an influential factor compared with an atmospheric temperature and a LP gas leakage. The more important factors on the fuel consumption efficiency are driving conditions such as a rapid braking, abrupt start and fast acceleration. The test results indicate that the normal start is 32.3% high compared to that of an abrupt start and the fast acceleration is 10.8% high compared with that of an abrupt start. And the fuel consumption efficiency for a rapid braking is 18.3% higher than that of an abrupt start. These indicate that the driving condition is very important to reduce the fuel consumption rate.

  • PDF

Effects of reaction conditions on composition of the organic liquid product during the deoxygenation process of palm oil (팜유(Plam Oil)의 탈산소 공정 중 운전 조건이 생성물의 조성에 미치는 영향)

  • Kim, Sungtak;Jang, Jeong Hee;Ahn, Minhwei;Kwak, Yeonsu;Han, Gi Bo;Jeong, Byung Hun;Han, Jeong Sik;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.865-875
    • /
    • 2018
  • Selection of optimum reaction conditions during deoxygenation process of palm oil is essential factor to obtain the maximum yield of bio-jet fuel. In this context, the deoxygenation of palm oil was carried out in a fixed bed reactor with an internal diameter of 1 inch loaded with a 1 wt.% $Pt/Al_2O_3$ catalyst. The composition of the organic liquid product(OLP), which can be utilized as a transportation fuel through the upgrading process, was analyzed by a gas chromatography method. The palm oil/hydrogen ratio and hydrogen pressure in the feed affected the decarboxylation(DCB) and hydrodeoxygenation(HDO) reactions, resulting in a change in the composition of the OLP. As the reaction temperature increased, the continuous cracking reaction of the deoxygenation product was promoted and the product composition in the $C_5{\sim}C_{14}$ region was increased. Thus, the results can help to understand the characteristics of deoxidation reaction of palm oil as well as the subsequent process, hydro-upgrading, to obtain the maximum yield of bio-jet fuel.