• Title/Summary/Keyword: fuel oil C

Search Result 290, Processing Time 0.023 seconds

A Study on the Piston Temperatures and Carbon Deposit Formation in LPG Fuelled Engine (LPGdusfy 엔진의 피스톤온도 및 카본디포짓 형성에 관한 연구)

  • 민병순;최재권;박찬준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.100-106
    • /
    • 1998
  • The wide open throttle performance and piston temperatures were measured by the change of fuel : gasoline and liquefied petroleum gas(LPG). Bench test method was developed and experimented to study the effect of temperature on the formation of carbon deposit. The bench test results were confirmed by measuring the piston temperature and observing the deposit production rate at an actual engine running condition. Results show that if the fuel of spark ignition engine is changed from gasoline to LPG, the output power decreases about 10% and the piston temperatures increase about 40~55$^{\circ}C$. In actual engine tests, because of this temperature increase, it was observed that the quantity of carbon deposit in the top ring groove increased in a big degree. Consuquently, it is known that the fing sticking may occur if the gasoline engine was rebuilt to LPG fuelled engine. Therefore, in order to preserve the durability of LPG fuelled engine, it is necessary to lower the piston temperature by hardware modificationor to reduce the carbon deposit by the improvement of engine oil.

  • PDF

The Effect of Organic Solvents on the Activity for the Synthesis of 12wt% Co-based FT Catalyst (12wt% Co 담지 FT 촉매 제조시 유기용매가 촉매활성에 미치는 영향연구)

  • LEE, JIYUN;HAN, JA-RYOUNG;CHUNG, JONGTAE;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.339-346
    • /
    • 2015
  • The synthesis of Fischer-Tropsch (FT) oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. This studied catalyst was prepared Cobalt-supported alumina and silica by the incipient wet impregnation of the nitrates of cobalt, promoter and organic solvent with supports. Cobalt catalysts were calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24h, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these experimental results, we have obtained the results as following; In case of $SiO_2$ catalysts, the activity of 12wt% $Cobalt-SiO_2$ synthesized by organic solvent was about 2 or 3 times higher than the activity of 12wt% $Cobalt-SiO_2$ catalyst synthesized without organic solvent. In particular, the activity of the $Cobalt-SiO_2$ catalyst prepared in the presence of an organic solvent P was two to three times higher than that of the $Cobalt-SiO_2$ catalyst prepared without the organic solvent. Effect of Cr and Cu metal as a promoter was found little. 200 h long-term activity test was performed with a $Co/SiO_2$ catalyst prepared in the presence of an organic solvent of Glyoxal solution.

A Study on the Characteristics of Coffee Ground(CG)-RDF by Using Different Drying Method (건조법에 따른 커피박 고형연료의 특성 고찰 연구)

  • Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.451-457
    • /
    • 2019
  • In this study, the characteristics of coffee grounds were reviewed by making them from solid fuel through heat-drying and oil-drying method. The differences in the higher calorific power by each dried sample were compared. And industrial analysis using the thermogravimetric analyzer was considered for applicability to organic waste and oily samples. Before and after drying, the surface of the specimen was observed with SEM equipment and the ingredients were measured through the EDS equipment. As a result, no other hazardous substances, such as heavy metals, were measured. Next, The differences between thermal decomposition and combustion reactions were considered through the TG and DTG curves. As a result, it is that the oil-dried coffee grounds is longer to burn than the heat-dried coffee grounds. Finally, the combustion gases emitted through the thermogravimetric analyzer were collected and the carbon monoxide and carbon dioxide performed qualitative and quantitative analysis using GC over time.

Conversion Characteristics of Liquid Fuels from Sawdust by Acetone-Solvolysis (아세톤-용매분해반응에 의한 톱밥으로부터 액체 연료물질의 전환 특성 연구)

  • Yoon, Sung Wook;Lee, Jong-Jib
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.231-236
    • /
    • 2014
  • Sawdust, produced as an wood by-product, is usable biomass as liquid fuels if decomposed to monomer unit, because the chemical structure are similar to high octane materials found in gasoline. In this study, parameters of thermochemical degradation by acetone-solvolysis reaction of sawdust such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. The liquid products by acetone-solvolysis from sawdust produced various kind of ketone, phenol and furan compounds. The optimum sawdust conversion was observed to be 88.7% at $350^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was as high as 7,824 cal/g. The energy yield and mass yield in acetone-solvolysis of sawdust was 60.8% and 36.4 g-oil/100g-sawdust after 40 min of reaction at $350^{\circ}C$, respectively. The major components of the acetone-solvolysis products, that could be used as liquid fuel, were 4-methyl-3-pentene-2-one, 1,3,5-trimethylbezene, 2,6-dimethyl-2,5-heptadiene-4-one, 3-methyl-2-cyclopenten-1-one as ketone compounds.

Analytical and sensitivity approaches for the sizing and placement of single DG in radial system

  • Bindumol, E.K.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 2016
  • Rapid depletion of fossil based oil, coal and gas reserves and its greater demand day by day necessitates the search for other alternatives. Severe environmental impacts caused by the fossil fire based power plants and the escalating fuel costs are the major challenges faced by the electricity supply industry. Integration of Distributed Generators (DG) especially, wind and solar systems to the grid has been steadily increasing due to the concern of clean environment. This paper focuses on a new simple and fast load flow algorithm named Backward Forward Sweep Algorithm (BFSA) for finding the voltage profile and power losses with the integration of various sizes of DG at different locations. Genetic Algorithm (GA) based BFSA is adopted in finding the optimal location and sizing of DG to attain an improved voltage profile and considerable reduced power loss. Simulation results show that the proposed algorithm is more efficient in finding the optimal location and sizing of DG in 15-bus radial distribution system (RDS).The authenticity of the placement of optimized DG is assured with other DG placement techniques.

Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel (자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향)

  • Ko H. S.;Moon M. B.;Shin C. S.;Oh H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

The Effect of Solution Heat Treatments on the Microstructure and Corrosion Behaviour for a Duplex Stainless Steel

  • Kim, Ki-Joon;Lee, Joon-Goo;Oh, Jae-Whan;Lee, Myung-Hoon;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.217-227
    • /
    • 2004
  • The bowl in a ship purifier suffers from high stress and high temperature in a detrimental heavy fuel oil environment. Duplex stainless steel(DSS) is a primary material to withstand this harsh condition. Newly-manufactured STS 329 grade DSS has been evaluated by various mechanical and electrochemical test methods. Eight heat treatment(HT) conditions with different temperature and time were applied to the DSS samples to improve corrosion resistance. Microstructure and polarization test results concluded the optimum HT condition was $1.090^{\circ}C$-60 minutes. Confirmation experiments for applying to a real bowl including stress corrosion cracking test exhibited the reproducibility of the optimum HT condition.

Frictional Characteristics of the Lubricants Formulated with Non-Conventional Base Stocks

  • Moon, Woo-Sik;Lee, Jong-Hun
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.144-149
    • /
    • 1995
  • Use of high-quality basestocks is increasing to produce high-performance lubricants. However, their tribological characteristics have not been understood clearly yet. In this study, a newly developed basestock from a fuel hydrocracker and a poly-alpha-olefin are selected and investigated on the properties of lubricants formulated with them. The Lubricants are prepared by blending the basestocks with typical additives such as a zinc dialkyldithiophosphate, a dispersant, a detergent and a dispersant-inhibitor package. Frictional and wear-preventing properties are investigated using an oscillating-type wear-testing machine. The contact is a ball-on-disk mode and the testing temperature is varied from room temperature to 200$^{\circ}$C. The results show that their frictional property is varied significantly and that the non-conventional oils result in lower friction and lower wear compared with conventional lubricants, especially at the higher temperatures.

Rotordynamic design of a turbogenerator supported by air foil bearings (공기포일베어링에 지지된 터보제너레이터의 회전체동역학적 설계)

  • Kim, Y.C.;An, K.Y.;Park, M.R.;Park, J.Y.;Choi, B.S.;Lee, A.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-276
    • /
    • 2006
  • This paper shows the rotordynamic characteristics of a turbo-generator for a BOP of a fuel cell system. The rotor-bearing system consists of magnetic shaft and compressor-turbine shaft, and the two shafts are connected by spline coupling and supported by oil free air foil bearing. Preliminary design according to several parameter is considered in detail. Static and dynamic characteristics of the AFB are estimated by the soft elasto-hydrodynamic analysis technique and the perturbation method. The results of the natural frequencies, mode shape, and unbalance response analysis are presented.

  • PDF

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.