• Title/Summary/Keyword: fuel failure

Search Result 295, Processing Time 0.039 seconds

Vibration Characteristics for 11.4 MW Class Marine Generator using Rigid Support (고정지지를 갖는 11.4 MW급 선박용 발전기의 진동 특성)

  • Dao, Vuong Quang;Barro, Ronald D.;Kim, Hyojung;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.585-588
    • /
    • 2013
  • Electric motor with reduction gear systems are being adopted recently as main propulsion on the special-purposed ships. These specialized ships or offshore vessels require higher power rating generators for propulsion and accommodation power supply. This study investigated the cause of exciter components failure in the view of excessive vibration, force or abnormal ship motion in service. Countermeasures are proposed to address the exciter component failure. A 1.4 MW class dual-fuel engine generator using rigid foundation for a LNG carrier was used as research model.

  • PDF

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

Uncertainties impact on the major FOMs for severe accidents in CANDU 6 nuclear power plant

  • R.M. Nistor-Vlad;D. Dupleac;G.L. Pavel
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2670-2677
    • /
    • 2023
  • In the nuclear safety studies, a new trend refers to the evaluation of uncertainties as a mandatory component of best-estimate safety analysis which is a modern and technically consistent approach being known as BEPU (Best Estimate Plus Uncertainty). The major objectives of this study consist in performing a study of uncertainties/sensitivities of the major analysis results for a generic CANDU 6 Nuclear Power Plant during Station Blackout (SBO) progression to understand and characterize the sources of uncertainties and their effects on the key figure-of-merits (FOMs) predictions in severe accidents (SA). The FOMs of interest are hydrogen mass generation and event timings such as the first fuel channel failure time, beginning of the core disassembly time, core collapse time and calandria vessel failure time. The outcomes of the study, will allow an improvement of capabilities and expertise to perform uncertainty and sensitivity analysis with severe accident codes for CANDU 6 Nuclear Power Plant.

Effects of Gap Resistance and Failure Location on prompt Fission Gas Release from a Cladding Breach

  • Tak, Nam-Il;Chun, Moon-Hyun;Ahn, Hee-Jin;Park, Jong-Kil;Rhee, In-Hyoung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.184-189
    • /
    • 1997
  • A prompt fission gas release model incorporating the resistance to gas flow in the gap was developed and the effects of gap resistance and failure location on prompt fission gas release from the cladding breach were assessed. The process of prompt fission gas release from the plenum and gap into the coolant was modeled in accordance with three major phenomena: (1) transient gas flow in the gap, (2) the growth of the fission gas bubble while it is still attached to the breach, and (3) the detachment of the fission gas bubble from the breach and mixing with the coolant. The cumulative mass release fraction by the present model was calculated for the case of Young-Gwang 3 & 4 nuclear fuel rod as a typical example. The results showed that the release behavior of prompt fission gas with time was different from the frictionless model which has frequently been used in a simplified approach, and that the location of cladding failure was another key factor for the prompt fission gas release process due to the resistance in the gap.

  • PDF

A Study on Effect of Shot Peening on Fracture Toughness of Spring Steel (스프링강의 파괴인성에 미치는 쇼트피닝 효과에 관한 연구)

  • Ha, K.J.;Park, K.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.66-72
    • /
    • 2003
  • Recently, the steel parts used at the aerospace and automobile industries are required to be used light weight parts. Therefore, used material, steel have to be a high stress, which is an indispensable condition in this field. At the consideration of parts design, high hardness of the lightweight parts have an benefit of saving fuel and material. A high stress of metal has a point of difference according to the shape of design, external cyclic load and condition of vibration. A crack generates on the surface of metal or under yield stress by defect of inner metal defect or surface defect and slowly, this crack grow stable growth. Finally, rapidity failure phenomena is happen. Fatigue failure_phenomena, which happen in metal, bring on danger in human life and property therefor, anti-fatigue failure technology take an important part of current industries Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper investigated the effect on frcature toughness using shot peening which is improve the resistance of crack growth and crack expansion rate by fatigue that make a compressive residual stress on surface.

  • PDF

Vibration Analysis for Failure Diagnosis of Cylinder Liner of Large Ship Engine (선박엔진의 실린더 라이너의 손상 진단을 위한 진동 분석법)

  • Koo, Hyunho;Cho, Yonsang;Park, Junhong;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Damage to the cylinder liner of large ship engines, such as scuffing on the surface, can occur very easily because it is operated in a corrosive environment. This scuffing may be due to oil film destruction and corrosive wear caused by water and sulfur included in the fuel, abrasive impurities, and poor lubricants. Thus, a method for monitoring the condition and diagnosing the failure of the cylinder liner and piston ring is needed. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which simulated an engine cylinder in a corrosive atmosphere. The lubricants used were base oil, stirred oil with distilled water, a NaCl solution, and dilute sulfuric acid. The friction coefficient and frequency spectrum were measured using a load cell and acceleration sense in each experimental condition. We then used these results to diagnose the failure of the cylinder liner.

Identification of the Failure of VFD Heat Sink at Fossil Power Plant

  • Jung, Jine-sung;Lee, Han-sang;Kim, Min-tae;Kim, Eui-hyun
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.153-156
    • /
    • 2009
  • The water cooling system for VFD (Variable Frequency Drive) of a fossil fuel power plant was reported to be shut down due to a water leak at the metal connection of the heat-sink to the hoses. In order to identify the cause of the failure, the system was visually inspected, and corrosion products were analyzed with SEM equipped with EDX. The failure was observed repeatedly at the nipples of certain location, suggesting galvanic corrosion. In a U-shaped heat sink with two nipples, for inlet and outlet, only one nipple was corrosively damaged at the tip, while the other was not. Most of the corrosion products were observed at the sound nipple and in the filter, identified as $Cu(OH)_2$. Some other corrosion products, composed of mostly $Cu_2O$, were found at the corrosively attacked nipple. A fair amount of Cl was also detected on the surface of the damaged nipple. It was concluded that galvanic corrosion was occurred due to a current leakage over the whole system, and the damage was accelerated by the accumulated chlorine ions in the cooling water.

Modeling of Reinforced Concrete for Reactor Cavity Analysis under Energetic Steam Explosion Condition

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.218-227
    • /
    • 2016
  • Background: Steam explosions may occur in nuclear power plants by molten fuel-coolant interactions when the external reactor vessel cooling strategy fails. Since this phenomenon can threaten structural barriers as well as major components, extensive integrity assessment research is necessary to ensure their safety. Method: In this study, the influence of yield criteria was investigated to predict the failure of a reactor cavity under a typical postulated condition through detailed parametric finite element analyses. Further analyses using a geometrically simplified equivalent model with homogeneous concrete properties were also performed to examine its effectiveness as an alternative to the detailed reinforcement concrete model. Results: By comparing finite element analysis results such as cracking, crushing, stresses, and displacements, the Willam-Warnke model was derived for practical use, and failure criteria applicable to the reactor cavity under the severe accident condition were discussed. Conclusion: It was proved that the reactor cavity sustained its intended function as a barrier to avoid release of radioactive materials, irrespective of the different yield criteria that were adopted. In addition, from a conservative viewpoint, it seems possible to employ the simplified equivalent model to determine the damage extent and weakest points during the preliminary evaluation stage.

Cutout shape and size effects on response of quasi-isotropic composite laminate under uni-axial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.335-348
    • /
    • 2010
  • Cutouts are often provided in structural and aircraft components for ventilation, for access, inspection, electric lines and fuel lines or sometimes to lighten the structure. This paper addresses the effects of cutout shape (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) and size on buckling and postbuckling response of quasi-isotropic (i.e., $(+45/-45/0/90)_{2s}$) composite laminate under uni-axial compression. The finite element method is used to carry out the investigation. The formulation is based on first order shear deformation theory and von Karman's assumptions are used to incorporate geometric nonlinearity. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. It is observed that for the smaller size cutout area there is no significant effect of cutout shape on load-deflection response of the laminate. It is also concluded that the cutout size has substantial influence on the buckling and postbuckling response of the laminate with elliptical-horizontal cutout, while this effect is observed to be the least in case of laminate with elliptical-vertical cutout.

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank (회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증)

  • Kim, Sungchan;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.918-923
    • /
    • 2018
  • The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.