• Title/Summary/Keyword: fuel ethanol

Search Result 198, Processing Time 0.02 seconds

Technical Feasibility of Ethanol as a Fuel for Farm Diesel Engines (농용(農用) 디이젤 엔진 연료(燃料)로서의 에타놀 이용(利用)에 관(關)한 연구(硏究))

  • Ryu, Kwan Hee;Bae, Yeong Hwan;Yoo, Soo Nam
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1982
  • The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.

  • PDF

A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC) (과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구)

  • Lee, Nam-Jin;Kim, Hyun-Soo;Cha, In-Su;Choi, Jeong-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

A Study on Combustion Characteristics with Ethanol and Hydrogen Enriched Gas Addition in Gasoline Engine (가솔린 엔진에서 에탄올 및 수소농후가스 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2928-2933
    • /
    • 2008
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

  • PDF

The Performance and Emission Characteristics on Operating Condition for the SI Engine Fuel with Gasoline-Ethanol and Hydrogen Enriched Gas (에탄올 및 수소농후가스 혼합연료 기관의 운전영역에 따른 성능 및 배기 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Oh, Seung-Mook;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The results obtained from experiments have shown that specific fuel consumption has increased by increasing ethanol amount in the blend whereas decreased by the use of hydrogen-enriched gas. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

A Study on the Spray-atomization Characteristics of Diesel-ethanol Blended Fuels in a High Pressure Diesel Injection System (디젤 고압 분사 시스템에서 디젤-에탄올 혼합연료의 분무 및 미립화 특성에 관한 연구)

  • Kim, Se-Hun;Park, Su-Han;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.

Emission Characteristics of a Gasoline Engine Using Ethanol Blended Fuel (가솔린 기관의 에탄올혼합연료의 배출가스 특성에 관한 연구)

  • 조행묵;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.516-521
    • /
    • 2004
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiencies characteristics were investigated in gasoline engine with an electronic fuel injection. The results showed that the increase of ethanol concentration in the blended fuels brought the reduction of THC and $CO_2$ emissions from the gasoline engine. THC emissions were drastically reduced up to thirty percent. And brake specific fuel consumption was increased. but brake specific energy consumption was similar level. However. unburned ethanol and acetaldehyde emissions increased. The conversion efficiency of Pt/Rh based three-way catalysts and the effect of ethanol on CO and NOx emissions were investigated by the change of engine speed. load and air/fuel ratio. Furthermore, the ethanol blended fuel results in the reduction effect of THC. CO and NOx emissions at idle speed.

Combustion and Exhaust Emission Characteristics of Bio-Ethanol Fuel(E100) in SI Engine (SI 엔진에서 바이오에탄올 연료(E100)의 연소 및 배기특성)

  • Ha, Sung-Yong;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.582-588
    • /
    • 2008
  • An experimental investigation was conducted to investigate the effect of Bio-ethanol fuel on the engine performance and exhaust emission characteristics under various engine operating conditions. To investigate the effect of bio-ethanol fuel, the commercial 1.6L SI engine equipped with 4 cylinder was tested on EC dynamometer. The engine performance including brake torque, brake specific fuel consumption, and barke specific energy consumption of bio-ethanol fuel was compared to those obtained by pure gasoline. Furthermore, the exhaust emissions were analyzed in terms of regulated exhaust emissions such as unburned hydrocarbon, oxides of nitrogen, and carbon monoxide.Result of this work shows that the effect of blending of ethanol to gasoline caused drastic decrease of emissions under various operating conditions. Also, improved engine performance such as brake torque and brake power were indicated for bio-ethanol fuel.

The Effect of the Excess Air Factor on the Emission Characteristics of the SI Engine Fueled with Gasoline-Ethanol and Hydrogen Enriched Gas (공기과잉률의 변화가 에탄올 및 수소농후가스 혼합연료 기관의 배기 특성에 미치는 영향)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.334-342
    • /
    • 2009
  • Trends in the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and has lower $CO_2$ emissions than gasoline, ethanol produced from biomass is expected to be used more frequently as an alternative fuel. It is recognized that for spark ignition (SI) engines, ethanol has the advantages of high octane number and high combustion speed. Due to the disadvantages of ethanol, it may cause extra wear and corrosion of electric fuel pumps. On-board hydrogen production out of ethanol is an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol are also examined. As a result, thermal efficiency increase compared to gasoline. Also, reductions in $CO_2$, NOx, and THC combustion products for ethanol vs. gasoline are described.

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.