• 제목/요약/키워드: fuel enthalpy

검색결과 53건 처리시간 0.026초

후방단이 있는 모델 초음속연소기의 연소수치해석 (Numerical Study on a Model Scramjet Engine with a Backward Step)

  • 문귀원;정인석;정은주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.127-132
    • /
    • 2001
  • A numerical study was carried out to investigate the combustion phenomena in a model Scramjet engine, which had been experimentally studied in the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was 2.0 in Mach number and the total temperature of hot flow was 1800K. Equivalence ratio was set to be rather higher value of 0.26 than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

선회분류 연소기의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Swirling Jet Combustor)

  • 심순용;손강호;이창식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.492-501
    • /
    • 1994
  • This study is an analysis of the turbulent diffusion flame with swirl flow and the calculated results are compared with experimental data in case of various swirl numbers and air-fuel rations. The mathematical model is restricted to single-phase, diffusion controlled combustion with swirl flow. Values of local flow properties were obtained by solving appropriate differential equation for continuity, momentum, stagnation enthalpy, concentration, turbulence energy, dissipation rate of turbulence energy, and the mean square of concentration fluctuation. The method is proposed for calculating the local probability of chemical reaction based on the use of the probability density function for the mixture fraction.

열회수장치에 의한 열교환 성능 분석(농업시설) (Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct)

  • 서원명;강종국;윤용철;김정섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.333-339
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas funnel connected to combustion chamber of greenhouse heating system. The experiment heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas funnel, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amount by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air pipes and exhaust air passages crossing the pipes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through funnels.

  • PDF

한국항공우주연구원 스크램제트 엔진 시험설비의 개발 (Development of the Scramjet engine Test Facility(SeTF) in Korea Aerospace Research Institute)

  • 이양지;강상훈;오중환;양수석
    • 한국추진공학회지
    • /
    • 제14권3호
    • /
    • pp.69-78
    • /
    • 2010
  • 한국항공우주연구원은 2000년부터 극초음속 공기흡입식 추진기관 시험설비의 설계와 개발에 착수하여 2009년 7월 시험설비의 구축을 완료하였다. 스크램제트 엔진 시험설비(SeTF)로 명명된 본 시험설비는 자유제트 형식 시험부를 갖춘 불어내기식, 고 엔탈피 풍동으로 고압공기 공급원, 고온 공기 공급시스템, 엔진 시험부, 연료 공급시스템, 설비 제어 및 데이터 처리 시스템 그리고 배기 시스템으로 구성되어 있다. 본 논문에는 SeTF의 설계, 사양을 소개하였으며 현재 수행 중인 SeTF의 특성 파악 시험에 대한 소개 및 일부 시험 결과를 정리하였다.

천연가스 정압기지의 압력강하를 이용한 터보팽창기 전력생산 (Turbo Expander Power Generation Using Pressure Drop at Valve Station in Natural Gas Transportation Pipeline)

  • 하종만;홍성호;유현석;김경천
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2012
  • 고압으로 수송되는 천연가스를 수요처에 공급하는 정압기지에서는 강제로 감압하여 보내준다. 이 때, 버려지는 압력에너지를 회수하는 방법으로 터보팽창기를 이용한 전력생산이 가능하며, 터보팽창기는 정압과 전력생산의 두 가지 기능을 동시에 수행하게 된다. 터보팽창기에서 생산되는 전력의 양은 유동전후의 엔탈피 차이며, 경제성에 영향을 미치는 주요인자로는 설비비, 전력생산량, 예열량, 전력가격, 가스가격의 5가지이다. 입구와 출구의 압력과 온도 조건이 고정되므로, 전력생산량은 결국 유량에 좌우된다. 따라서, 천연가스 수요의 계절별 수급변화 패턴에 따른 터보팽창기 적정용량을 결정하는 것이 경제성확보의 핵심기술이다. 유동량변화가 심한 경우의 전력생산량 산정법의 algorithm을 제시하였으며 이를 사용한 case study를 수행하였다.

천연가스의 수증기-이산화탄소 복합개질을 위한 충진층 관형반응기의 전산모사 (A Simulation of the Tubular Packed Bed Reactor for the Steam-CO2 Reforming of Natural Gas)

  • 이득기;구기영;서동주;윤왕래
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.73-82
    • /
    • 2012
  • A 2-dimensional heterogeneous reactor model was developed and simulated for a tube reactor of packed bed where the steam-$CO_2$ combined reforming reaction of natural gas proceeded to produce synthesis gas. Under the reactor feeding rate, 45 $Nm^3$/h, of the reactant gas stream, the 2-dimensional heterogeneous reactor model showed the similar results to those from the ASPEN simulator although there were some discrepancies between the two in the temperature and the $H_2$/CO ratio of the reformed gas at the reactor exit. The calculated enthalpy difference between the reformed gas at the reactor exit and the reactant gas fed to the reactor was closely correspondent to the total amount of heat transferred to the reactor interior from the furnace. This supports that the 2-dimensional heterogeneous reactor model was reasonably established and the numerical solution was properly obtained.

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

Classification Index and Grade Levels for Energy Efficiency Classification of Agricultural Heaters in Korea

  • Shin, Chang Seop;Jang, Ji Hoon;Kim, Young Tae;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.264-269
    • /
    • 2013
  • Purpose: This study was carried out to develop a classification index and grade levels to rate agricultural heaters for energy efficiency classification. Methods: The classification index was developed mainly by taking simplicity of calculation and easy access to relevant data into consideration. The grade levels were developed on the basis of a 5-grade classification system in which graded heaters are to be normally distributed over the grades. The value of each grade level were determined in terms of the classification index values calculated using the published performance data of agricultural heaters tested at the FACT in Korea over the past 12 years. Results: The thermal efficiency of agricultural heaters based on the enthalpy method was proposed as a reasonable classification index. The grade levels were proposed in equation form for three types of agricultural heaters: fossil fuel heaters, wood pellet heaters and wood pellet boilers. A reasonable energy efficiency classification of agricultural heaters could be performed using the proposed classification index and grade levels. Conclusions: It is expected that energy saving programs will be extended to agricultural machines in the near future. The classification index and grade levels to rate agricultural heaters for energy efficiency classification were developed and proposed for such near future to come.

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF