• Title/Summary/Keyword: fuel distribution

Search Result 1,404, Processing Time 0.029 seconds

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

A Survey on the Environmental Conditions of the CO Patients treated by Hyperbaric Oxygen Therapy (연탄(煉炭)가스 중독자(中毒者)의 생활환경(生活環境)에 관(關)한 역학적(疫學的) 연구(硏究))

  • Kim, In-Dal;Yun, Dork-Ro;Choi, Y.O.;Yun, I.C.;Lee, C.K.;Yang, Y.H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 1972
  • Carbon monoxide poisoning is one of the most serious health problems in Korea, because we have been encountered with the highest incidence of CO poisoning in the world due to the unique heating system in home called 'ondal'. We opened Hyperbaric chamber unit in the Seoul National University Hospital last Jan, 1969. We have treated 848 patients as of Sept. 30., 1972, around 44 months period. We collected the informations on the environmental conditions of the place where CO intoxication actually occured by filling up the questionaire from 505 patients. The following findings were obtained. 1. Age distribution showed that the highest incidence was found in the younger age group between age of 10 to age of 29 in both sex. 2. Sex ratio of the patients was 1:1.14. 3. The socio-economic level of the patient was relatively low. 4. Housewife & housemaid were the major victims of the intoxication in the female patients & in the case of the male patient, occupational backgrounds were diverse. 5. Many patients from the middle class experienced the intoxication by sleeping at newly built room. 6. Many intoxication has been occured in the structure of houses where communicating doors are existing between living room & kitchen. 7. All findings obtained taught us again that CO poisoning is the serious by-product of the national fuel policy which put emphasis on the use of coal & socio-economic status is a very important parameter in this hazards.

  • PDF

Numerical Analysis of Off-Gas Flow in Hot Area of the Vitrification Plant (유리화공정 고온영역에서의 방사성 배기체 유동해석)

  • Park, Seung-Chul;Kang, Won-Gu;Hwang, Tae-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2007
  • Appropriate numerical models for the simulation of off-gas flow in hot area of the vitrification plant have been developed in this study. The models have been applied to analyze the effect of design parameters of real plant and numerical analyses have been performed for CCM(Cold Crucible Melter), pipe cooler and HTF(High Temperature Filter). At first, the effect of excess oxygen and the ratio of oxygen distribution on combustion characteristics in the CCM has been studied. Next, solidification behavior of radio nuclide in the pipe cooler has been numerically modeled and scrutinized. Finally, flow pattern in accordance with the location of off-gas entrance of the HTF has been compared.

  • PDF

Partial Discharge Characteristics of Epoxy for Ignition Coil (점화코일용 에폭시의 부분방전 특성)

  • Shin Jong-Yeol;Hong Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.141-149
    • /
    • 2004
  • The automobile equipped with a gasoline engine uses the ignition coil, namely, a high voltage generator, to make the mixed fuel ignited and burned in the combustion chamber, which results in the power to drive the engine. The ignition coil functions to convert a low voltage of the primary into a hiか voltage of the secondary by switching method, which will be transmitted to the electrode. Here, if the ignition coil has a defect even a little, it cannot function well. In this study, it was chosen epoxy molding ignition coil in recently and epoxy resin which is insulation material as specimens, and it was measured the characteristics of the partial discharge occurring to the specimens when those were applied to a voltage, and thereby, it was researched and analyzed the distribution of phase angle, amount and count of discharge due to the changing voltage, And as the result is applying to the actual automobile ignition system, it can be expected the enhancement of the performance of the ignition coil and the reliability of the electrical equipment.

Implementation of an Architecture for the Dismantling Digital Mock-up System (해체 디지털목업시스템 아키텍쳐 구현)

  • Park Hee-Seoung;Kim Sung-Kyun;Lee Kune-Woo;Oh Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.237-247
    • /
    • 2005
  • It is necessary to forecast the various dismantling activities prior to dismantling nuclear facilities by using various software instead of a physical mock-up system because the dismantling in a contaminated with radioactivity cause the results of an unexpected situation. The component that needs to develop a dismantling mock-up system was examined. There are many component systems such as a decommissioning database system,3D dosimetric mapping that represents a distribution of a radionuclide contamination, a component of modeling for nuclear facility and devices include the decontamination and decommissioning. The research of software architecture about these components was carried out because these component systems that have been independently doesn't describe not only to visual an activities of Decontamination and Decommissioning(D&D) but also to evaluate it. The result was established an architecture that consist of an visualization module which could be visualized an D&D activities and a simulation module which can be evaluated a dismantling schedule and decommissioning cost.

  • PDF

Prediction Method of the BOG for the Membrane Type LNGC in Middle East Route (중동항로 취항 멤브레인형 LNGC의 BOG 예측에 관한 연구)

  • 장은규;정연철
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.343-350
    • /
    • 2004
  • LNGC suffers a great heat inflow during navigation and this heat inflow inevitably boils off the LNG. The boiled off gas(BOG) is normally consumed as a fuel for ship's engine. The boiled off LNG means a loss of cargo during transportation from the viewpoint of shipper. Therefore, a contract between shipper and ship operator is made on the limit of boiled off rate(BOR) under 0.15 %/day based on laden voyage. This contract on BOR limit requires that ship's officer has a correct knowledge on BOR for his ship. But, in most cases ship is operated based on only officer's experiences. In this study, author presented a simple model to predict the boiled off gas(BOG) during navigation based on the existing precision heat exchange design technology about the heat distribution on the hull and heat inflow from outside through the hull. The BOG is calculated for ballast and laden voyage based on the actual weather conditions and verified by comparing with the measured BOG for the study ship. The study ship is a membrane type LNGC which is now servicing in Middle east route. Thus, the BOG prediction method which is presented in this study is expected to be used for an useful tool to manage the BOG in now servicing LNGC.

  • PDF

A Case Study on the Application of Systems Engineering to the Development of PHWR Core Management Support System (시스템엔지니어링 기법을 적용한 가압중수로 노심관리 지원시스템 개발 사례)

  • Yeom, Choong Sub;Kim, Jin Il;Song, Young Man
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2013
  • Systems Engineering Approach was applied to the development of operator-support core management system based on the on-site operation experience and document of core management procedures, which is for enhancing operability and safety in PHWR (Pressurized Heavy Water Reactor) operation. The dissertation and definition of the system were given on th basis of investigating and analyzing the core management procedures. Fuel management, detector calibration, safety management, core power distribution monitoring, and integrated data management were defined as main user's requirements. From the requirements, 11 upper functional requirements were extracted by considering the on-site operation experience and investigating documents of core management procedures. Detailed requirements of the system which were produced by analyzing the upper functional requirements were identified by interviewing members who have responsibility of the core management procedures, which were written in SRS (Software Requirement Specification) document by using IEEE 830 template. The system was designed on the basis of the SRS and analysis in terms of nuclear engineering, and then tested by simulation using on-site data as a example. A model of core power monitoring related to the core management was suggested and a standard process for the core management was also suggested. And extraction, analysis, and documentation of the requirements were suggested as a case in terms of systems engineering.

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Preparation and Electrical Conductivity of Scandia Stabilized Zirconia by using Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 스칸디아 안정화 지르니코니아의 제조와 전기 전도도)

  • Choi, Young-Hoon;Peck, Dong-Hyun;Park, Young-Chul;Lim, Kyoung-Tae;Suhr, Dong-Soo;Wackerl, J.;Markus, T.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.690-695
    • /
    • 2007
  • Scandia stabilized zirconia (ScSZ) is adapted for electrolyte material of solid oxide fuel cell (SOFC) because of its high ionic conductivity and chemical stability. ScMnSZ1 powder having a composition of $((ZrO_2)_{0.89}(Sc_2O_3)_{0.1}(MnO_2)_{0.01})$ is synthesized by ultrasonic spray pyrolysis (USP) method. Porous ScMnSZ1 powder is obtained by using a pore forming agent. Microstructure and morphology, particle size distribution of porous powder synthesized with 3wt% pore forming agent are investigated. Sintered ScMnSZ1 sample with ground fine powder are also investigated their microstructure and electrical conductivity. The electrical conductivity of sintered ScMnSZ1 samples with ground fine powder was 0.082 S/cm, 0.127 S/cm and 0.249 S/cm at $750^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$, respectively.