• Title/Summary/Keyword: fuel costs

Search Result 335, Processing Time 0.028 seconds

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.72-79
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

  • PDF

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Dae-Kwon Ko;Soo-Kil Ahn
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.26-26
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate (금속분리판의 Electro Polishing 및 CrN 코팅을 통한 PEMFC 성능 향상을 위한 연구)

  • Hwang, Sung Tack;Cheon, Seung Ho;Song, Jun Seok;Yun, Young-Hoon;Kim, Byeong Heon;Zhang, Xia;Kim, Dae-Ung;Hyun, Deoksu;Oh, Byeong Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2014
  • As an important component of a fuel cell, the bipolar plate comprises a large proportion in the fuel cell's volume, weight and price. The bipolar plate is the most widely used; however, graphite bipolar plate is large in volume, brittle and therefore easily broken during assembling. In addition, due to its poor machinability, production costs a lot, unless mass production. Compared with the graphite bipolar plate, the metal bipolar plate has good machinability, high electric conductivity and strong mechanical strength; however, it corrodes easily and has a high contact resistance, so in order to prevent corrosion and reduce the contact resistance, the basic metal needs to be processed by use of electro polishing and coating. The water which is produced by electrochemical reactions in the fuel cell must be discharged smoothly. In this study, in order to prevent corrosion the processes of electro polishing and CrN coating were used. According to the presence or absence of these processes, the contact angles can be measured and different metal bipolar plates can be made, these plates can be used for comparing and analyzing the performance of the fuel cell.

A Study on Economical Operation of a Ship's Main Engine - The case of Training Ship SAENURI - (선박 기관의 경제적 운전에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryeol;Kim, Bu-Gi;Rim, Geung-Su;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • Operation Abstract : Operational cost required for navigating a ship may differ from according to type, scale, economic speed, navigation area and other factors. However, it is known that the fuel oil price ratio takes 50~60 %. It is the current trend because of the use of poor quality fuel and it is reviewed even for small to medium sized ships to save the operational costs due to the recent rise of international oil price. Furthermore, ocean carriers are taking action to low speed navigation as the alternative method of reducing fuel consumption. Hence, in this study, fuel consumption of main engine was measured by using actual operating ship data compared with sea speed at sea. It was suggested that the area of M/E's load(70 %) lower than NCR is the optimal navigating condition through the relation between speed and fuel consumption compared with advance ratio together with the load.

A Study on Combustion and Emission Characteristics of Diesel Generator Fuelled with Coffee Ground Pyrolysis Oil (커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구)

  • PARK, JUNHA;LEE, SEOKHWAN;KANG, KERNYONG;LEE, JINWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.567-577
    • /
    • 2019
  • Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsification of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated under the entire load range. Experimental results show that ignition delay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.

Economic Assessment on an Integrated system of Phosphoric Acid Fuel Cell and Organic Rankine Cycle (인산형 연료전지와 유기랭킨사이클 연계시스템에 대한 경제성 평가)

  • Kim, Deug Soo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • In this study, the operational characteristics of the 7.48 MW fuel cell power plant consisting of 17 units of 440 kW Phosphoric Acid Fuel Cell (PAFC) in operation since its commercial operation in December 2017 were explained and the heat recovery process of the plat using Organic Rankine Cycle (ORC)was simulated. The fuel cell system performance improvement and economic assessment were analyzed by calculating the amount of heat recovery and electric power available when connecting a 125 kW XLT Model ORC for hot water heat sources with 105℃, 40.8 t/h. The result of the study shows that integrating the 125 kW ORC to PAFC power plant would improve generating efficiency by about 0.6% through annually 851,472 kWh of electricity produced by ORC, and fuel cell and ORC integrated systems were calculated to have a 0.35% higher Internal Return Ratio and more Net Present Value of 1,249 million KRW than not installing ORC despite installation costs.

  • PDF

Development of DC/DC Converters and Actual Vehicle Simulation Experiment for 150 kW Class Fuel-cell Electric Vehicle (150kW급 수소연료전지 차량용 DC/DC 컨버터 개발 및 실차모사 실험)

  • Kim, Sun-Ju;Jeong, Hyeonju;Choi, Sewan;Cho, Jun-Ho;Jeon, Yujong;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • This paper proposes a power system that includes a 120k W fuel cell DC-DC converter (FDC) and 30 kW bidirectional DC-DC converter (BHDC) for a 150 kW fuel-cell vehicle. With a high DC link voltage of 800 V, the efficiency and power density of the power electronic components are improved. Through the modular design of FDC and BHDC, electric components are shared, resulting in reduced mass production costs. The switching frequency of 30 kHz of full SiC devices and optimal design of coupled inductor reduce the volume, achieving a power density of 8.3 kW/L. Furthermore, a synergetic operation strategy using variable limiter control of FDC and BHDC was proposed to efficiently operate the fuel cell vehicle considering the fuel cell stack efficiency according to the load. Finally, the performance of the prototype was verified by Highway Fuel Economy Driving Schedule testing, EMI test, and the linked operation between FDC and BHDC. The full load efficiencies of the FDC and BHDC prototypes are 98.47% and 98.74%, respectively.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

Environmental Conditions in the Reheating Furnace for High Quality Advanced High Strength Steels for Automobiles

  • Sohn, Il-Ryoung;Chin, Kwang-Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.193-197
    • /
    • 2007
  • It is well known that the development of Advanced High Strength Steels (AHSS) is very important for the automotive industry in order to improve fuel efficiency and the reduction of material costs. However, it is particularly difficult to improve the surface quality of AHSS because the high amount of Si, Al, Mn and Ti etc. in AHSS promote selective oxidation, resulting in surface defects. The reheating process in the hot strip mill would cause severe oxidation because it is carried out at elevated temperatures under aggressive environments. In this study a reheating furnace simulator was developed to investigate oxidation phenomena in the reheating process. The environmental gas for the reheating furnace was made by burning coke oven gas with air in the simulator. The air/fuel ratio is precisely controlled by MFC. Ti oxides are easily formed on grain boundaries and Mn and Si oxides are usually formed in inner grains near the steel surface with a small round shape.