• Title/Summary/Keyword: fuel consumption efficiency

Search Result 483, Processing Time 0.024 seconds

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Effect of Flywheel Weight on the Vibration of Diesel Engine (플라이휠 중량(重量)이 디젤 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Sung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.167-180
    • /
    • 1993
  • Most of small size diesel engines are widely used with the same size and weight flywheel in the levels of 6.0kW and 7.5kW. This study was conducted to obtain basic data which affect the engine performance of the power tiller. The flywheel weight was considered as a major factor in this research. Basically, fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine were measured and analyzed on four levels of flywheel weight, 32.2, 29.4, 26.2 and $24.2kg_f$, respectively. Results were obtained as follows: 1. The weights of flywheel were $23.7kg_f$ from design program of JSME and $24.5kg_f$ from ASME and SAE design criteria. Therefore, the flywheel weight of $32.2kg_f$ might be reduced about $8kg_f$ in 7.5kW engine. 2. The rated outputs of 6.0kW and 7.5kW engine were actually 7.43kW and 7.85kW, respectively. When flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, outputs were increased from 7.43kW to 7.70kW in 6.0kW engine and from 7.85kW to 8.25kW in 7.5kW engine. 3. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, fuel consumption ratio was decreased from 300.8 to 296.8g/kW-hr in 6.0kW engine and also from 313.6 to 312.8g/kW-hr in 7.5 kW engine, respectively. 4. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, mechanical efficiency of engine was increased from 76.1% to 76.8% in 6.0kW engine and also from 76.7% to 77.0% in 7.5kW engine, respectively. 5. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, vibration was decreased at X-axis and Z-axis in 6.0kW engine, however, slightly increased at Y-axis in 6.0kW engine and at all axes in 7.5kW engine. 6. When the flywheel weight was reduced from $32.2kg_f$ to $24.4kg_f$ motoring loss was decreased from 2.33kW to 1.75kW in 6.0kW engine and also from 2.46kW to 1.84kW in 7.5kW engine.

  • PDF

Introduction of Optimum Navigation Route Assessment System based on Weather Forecasting and Seakeeping Prediction (기상 예보 및 내항성능을 고려한 최적 항로 평가 시스템의 도입)

  • Park Geon Il;Choi Kyong Soon;Lee Jin Ho;Kim Mun Sung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.61-70
    • /
    • 2004
  • This paper treats optimal route assessment system at seaway based on weather forecasting and wave measurement through observation. Since early times. captain & officer have been sailing to select the optimum route considering the weather ana ship status condition empirically. However. it is rare to find digitalized onboard route support system whereas weather fax or wave and swell chart are utilized for the officer. based on officer's experience. In this paper, optimal route assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimized ETA (estimated time of arrival) ana fuel consumption is evaluated for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Basically. the weather forecast is assumed to be prepared previously in order to operate this system.

  • PDF

A Study on the Greenhouse Gas emission from Ships in Korea (선박부문 온실가스 배출량 산정에 관한 연구)

  • Choe, Sang-Jin;Park, Seong-Gyu;Jang, Yeong-Gi;Lee, Hui-Gwan;Hwang, Ui-Hyeon;Bong, Chun-Geun
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • Recently, the reduction of greenhouse gases(GHG) for climate change is the most important international issue. In order to control efficiency GHG emission rate reduction, it is essential to establish GHG emission inventory preferentially. The emission of ships that are emitting its $CO_2$ in international waters is becoming chief among the issues which country is put under an obligation. In the IMO reports, shipping is estimate to emit 1,046million tonnes of $CO_2$, which corresponds to 3.3% of global emission during 2007. International shipping is estimated to have emitted 870 million tonnes, about 2.7% of global emission of $CO_2$ in 2007. In this study, the general information of GHG emission, based on fuel consumption statistic, Tier 1, and the emission inventory is calculated to break down in to domestic and international emission. The GHG emission from ships in Korea was total 31,646 Gg $CO_2$-eq in 2009, which is included fishing, Korea flag coastal ship, Korea flag ocean going ship and foreign flag ships. And domestic emission and international emission was 5,398Gg $CO_2$-eq, 7,630Gg $CO_2$-eq and foreign flag ship was 18,618Gg $CO_2$-eq respectively.

A Basic Study for the Application of the Shafting System for the Contra-Rotating Propeller (상반회전 프로펠러 축계 실용화를 위한 기초 연구)

  • Shin, Sang-Hoon;Lee, Seung-Min;Rim, Chae Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.391-398
    • /
    • 2020
  • If the lost energy produced by a propeller can be partially recovered, the propulsive efficiency can be increased, and the fuel consumption reduced. The devices installed for this purpose are called Energy Saving Devices, of which the Contra-Rotating Propeller system is one of the most effective devices. The first problem to be solved to install the Contra-Rotating Propeller system on a large ship is that the mean pressure generated in the journal bearing needs to meet the design criteria of the classifications. In Korea, however, the practical use is being delayed because it cannot overcome this step. The next step is to lower local pressure to increase the reliability. In this study, to solve the mean pressure problem as the first step of practical use, a product carrier with a short stern shape was selected to reduce the weight of the shafting system, and a suitable shafting-system design plan was proposed. Shaft analysis confirmed that the mean pressure of 0.8 MPa (8 bar), which is a design criterion of the classifications for a journal bearing lining material (white metal), was satisfied. In addition, the necessity of reducing the local pressure was also confirmed.

A Study on Output Enhancement Method of PV Array Using Electrical Circuit Reconfiguration Algorithm (전기적 회로절체 알고리즘에 의한 태양광 어레이의 출력향상 방안에 관한 연구)

  • Kim, Byung-Mok;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.9-17
    • /
    • 2020
  • Recently, RES (renewable energy source) projects have been spreading all over the world as an alternative to solve the shortage of energy and environmental problems caused by fossil fuel consumption. The Korean government also supported the policy and demonstration project to increase the proportion of renewable energy to 63.8[GW] until 2030, which is 20[%] of the total power generation. On the other hand, output loss of a PV array can occur when the surrounding high-rise buildings and trees shade a PV array. Therefore, this paper proposes an algorithm to improve the output loss of a PV array, which electrically changes a circuit configuration of PV modules by wiring and switching devices. Furthermore, this study modeled a PV system based on PSIM S/W, which was composed of a PV array, a circuit configuration device, and a grid-connected inverter. From the simulations results with the modeling and test device, the existing method showed no output when 50% of the shade occurs in PV modules. In contrast, the proposed method could produce the output because the voltage in the PV module could be restored to 246[V], and the operation efficiency of the PV system could be improved by the operation algorithm of the circuit configuration device.

Introduction of Optimum Navigation Route Assessment System based on Weather Forecasting and Seakeeping Prediction (개상 예보 및 내항성능을 고려한 최적 항로 평가 시스템의 도입)

  • Park Gun-il;Choi Kyong-Soon;Lee Jin-Ho;Kim Mun-Sung
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.833-841
    • /
    • 2004
  • This paper treats optimal route assessment system at seaway based on weather forecasting and wave measurement through observation Since early times, captain & officer have been sailing to select the optimum route considering the weather and ship status condition empirically. However, it is rare to find digitalized onboard route support system whereas weather fax or wave and swell chart are utilized for the officer, based on officer's experience. In this paper, optimal route assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimized ETA(estimated time of arrival) and fuel consumption is evaluated for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Basically, the weather forecast is assumed to be prepared previously in order to operate this system.

Thermodynamic Analysis of the Organic Rankine Cycle as a Waste Heat Recovery System of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열 회수 시스템의 열역학적 분석)

  • Jin, Jung-Kun;Lee, Ho-Ki;Park, Gun-Il;Choi, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.711-719
    • /
    • 2012
  • A thermodynamic analysis and a feasibility study on the organic Rankine cycle (ORC) as a waste heat recovery system for a marine diesel engine were carried out. The ORC and its combined cycle with the engine were simulated, and its performance was estimated theoretically using R245fa. A parametric study on the performance of the ORC system was carried out under different temperature conditions of the heat transfer loop and specification of the heat exchanger. According to the thermodynamic analysis, ~10% of the thermal efficiency of the cycle was able to be realized with the low temperature heat source below $250^{\circ}C$. The electric power output of the ORC was estimated to be about 4% of the mechanical power output of the engine, considering additional pumps for cooling water and circulation of the heat transfer medium. According to the present study, the electric power generated by the ORC is about 59%-69% of the required power, and it is possible to reduce the fuel consumption under normal seagoing conditions.

Development of a Fleet Management System for Cooperation Among Construction Equipment (건설장비 협업을 위한 플릿관리 시스템 개발)

  • Ahn, Seo-Hyun;Kim, Sung-Keun;Lee, Kwan-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.573-586
    • /
    • 2016
  • In construction jobs, a combination of various kinds of machinery is used to perform earthworks at a large-scale site. Individual equipments essentially cooperate with each other on task such as excavation, load, transfer and compaction. While other area have studied cooperation system, related study in domestic construction is in poor condition. In this study, construction equipment fleet management system is developed for solving this problem and find way to improving efficiency in earthworks site. The entire concept of the fleet management system, including its components and process, has been systematically outlined in this paper. An operational methodology has also been suggested, where a number of machines, such as the excavators, trucks and compactors, are chosen and further grouped into a cluster. A case study verify fleet management system's effectiveness on performing task package by comparing existing work method with methodology in this study. Fleet management system in this study is expected to curtail fuel consumption by the reduction of working time and moving distance. Furthermore, it can be anticipated to declining carbon emission effect.

Development of a Soil Distribution Method and Equipment Operation Models Using Worker's Heuristics (작업자의 휴리스틱을 적용한 토량배분 및 장비운영 모델 개발)

  • Lim, So-Young;Kim, Sung-Keun;Ahn, Seo-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.551-564
    • /
    • 2016
  • Earthworks are the fundamental steps in a construction job, and are mainly comprised of smaller tasks performed by construction machinery. The productivity of the construction job can be improved by optimizing excavation, filling, and other such operations. Earthworks involve a lot of mechanical work performed by the collaboration between various kinds of construction equipment, which in turn leads to higher fuel consumption. Actual earthworks depend mostly on the intuition and experience of the driver of the machines, thus leading to inefficiency and environmental problems caused by unnecessary emission of carbon, Recently automated and information-oriented technologies are consistently being researched towards the improvement of efficiency of earthworks in the construction industry. The present research involves the introduction and understanding of the decision-making elements of heuristics which can be applied to the earthwork planning. A method is also suggested for creating an effective work path for construction machine to perform task packages (TP) for cutting and filling processes. A simulation test is performed to verify the effectiveness of suggested methods in terms of space interference and total moving distance of construction equipment.