• Title/Summary/Keyword: fuel consumption efficiency

Search Result 483, Processing Time 0.023 seconds

Improvement of Diesel Engine Performance for Alternative Fuel Oil (대체연료를 사용할 경우의 디젤기관의 성능향상에 관한 연구)

  • 고장권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.97-110
    • /
    • 1992
  • Rape-seed oil has high viscosity and high rubber content like other vegetable oils. When crude rape-seed oil obtained by a general oil extraction process is used in a diesel engine, automization condition during injection is not good and a large amount of combustion product is doposited in a combustion chamber. The improvement of a diesel engine is required to use rape-seed oil as a diesel engine fuel. In this study, the physical and chemical properties and combustion characteristics of rape-seed oil were investigated. The auxiliary aid was developed to improve automization condition and the effect of the auxiliary injection aid on the performance of a diesel engine was determined. The results are as follows. 1) Oil content of rape-seed is 45%. The exraction rate is 33%. The resuls show higher values compared to those of other vegetable oils. 2) The viscosity of rape-seed oil is 50.8 cSt and nearly 14 times of diesel oil viscosity. 3) The heating value and flash point of rape-seed oil are 9720kcal/Kg and 318$^{\circ}C$, respectively. 4) In case rape-seed oil is used as fuel, brake horse power, specific fuel consumption and brake thermal efficiency are compared to those of diesel oil. The results of rape-seed oil show 3.6%, 12.7% and 3.1% higher values. 5) Particle size of injection fuel with the auxiliary injection aid on the performance of a diesel engine was determined. The results are as follows. 1) Oil content of rape-seed is 45%. The extraction rate is 33%. The results show higher values compared to those of other vegetable oils. 2) The viscosity of rape-seed oil is 50.8 cSt and nearly 14 times of diesel oil viscosity. 3) The heating value and flash point of rape-seed oil are 9720kcal/Kg and 318.deg.C, respectively. 4) In case rape-seed oil is used as fuel, brake horse power, specific fuel consumption and brake thermal efficiency are compared to theose of diesel oil. The results of rape-seed oil show 3.6%, 12.7% and 3.1% higher values. 5) Particle size of injection fuel with the auxiliary injection aids is 100.mu.m smaller than that od injection fuel without the aid. 6) Brake horse power and brake thermal efficiency with the auxiliary injection aid increase 5.07% and 6.07%, respectively. However, specific fuel consumption decreases 3.85% with the auxiliary injection aid.

  • PDF

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

A study on the Engine Downsizing Using Mechanical Supercharger

  • Bae Jae-Il;Bae Sin-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2321-2329
    • /
    • 2005
  • One means of fulfilling $CO_2$ emission legislation is to downsize engines by boosting their power using turbochargers or mechanical superchargers. This reduces fuel consumption by decreasing the engine displacement. When a turbocharger, which is preferable to a mechanical supercharger in terms of fuel efficiency, is used, there is insufficient availability of exhaust gas energy at low engine speeds, resulting in an unfavorable engine response. Therefore, mechanically driven superchargers have increased in popularity due to their quick response to changing speeds in the transient phase. However, since a mechanical supercharger obtains its driving power from the engine, it is difficult to decrease its fuel consumption. This remains a large negative factor for superchargers, despite their excellent dynamic performance. This study aims to develop a power control concept to improve the fuel economy of a mechanical screw supercharger, which could then be used for engine downsizing.

Comparison and Analysis of Fuel Consumption by CODAD, CODLOD and CODLAD System for Combat Support Ship (군수지원함의 CODAD, CODLOD 및 CODLAD 추진체계에 따른 연료 소비량 비교 및 분석)

  • Kim, Min-wook;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1049-1059
    • /
    • 2017
  • After patrol corvett Cheonan was hit and sank on duty, the Republic of Korea Navy has tried to install hybrid propulsion system on naval ship to reduce vibration and noise problems during navigation. The hybrid propulsion system has advantage that propulsion motor can be propelled in low speed operation of the vessel. This can be a better quietness than a mechanical propulsion system which consists of a conventional internal combustion engines. And more economical operation is possible by using a propulsion motor in a low speed operation where a fuel efficiency of the internal combustion engine is poor. In this paper, we set up virtual ship on the basis of a combat support ship in the Republic of Korea Navy, economically compared and analyzed fuel consumption between conventional and hybrid propulsion system. As a result, it was confirmed that the fuel efficiency of hybrid propulsion system which use electric motor had been relatively improved.

An experimental study on characteristics of exhaust emissions with fuel properties changes in a diesel engine for small-sized fishing vessel (소형 어선용 디젤기관에서의 연료유 성상에 따른 배기배출물 특성에 관한 연구)

  • Suh, Jung-Ju;Wang, Woo-Kyung;Kim, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.487-494
    • /
    • 2010
  • In order to test the applicability of bunker-A in a diesel engine for small-fishing boat, the investigation of the engine performance and the exhaust emission was performed under various conditions of fuel property, intake air pressure and fuel temperature. It was also performed based on IMO NOx Technical code. At high load, the energy consumption rate of bunker-A was lower than that of diesel oil, and the characteristics of exhaust emission of bunker-A were similar to those, and NOx emission rates of both fuels satisfied the IMO NOx emission regulation limits. The energy consumption rate and characteristics of exhaust emission were improved as the intake air pressure was increased, but these were not improved remarkably as the temperature of bunker-A was heated. However, at low load the energy consumption rate, CO emission rate and HC emission rate of bunker-A were higher than those of diesel oil, but NOx emission rates of the fuels were about the same. In addition, at low load the energy consumption rate and CO emission rate of bunker-A were increased as the intake air pressure and the temperature were higher than normal conditions. Accordingly, it is thought that the use of bunker-A in a kind of test engine is possible at high load. On the other hand, it is thought that more research is needed to improve the combustion efficiency under low temperature and low load condition.

A Study on the Performance Analysis of Diesel Engine Supercharged by Exhaust Gas Thrbine (배기가스 터빈과급 디젤기관의 성능해석에 관한 연구)

  • 안진근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.421-429
    • /
    • 1997
  • This study is theoretically examined the influences on the performance of diesel engine super¬charged by exhaust gas turbine with the change of excess air factor, admission ratio, total efficien¬cy of turbine and compressor, scavenging pressure ratio, and scavenging temperature. In this study, all calculations are carried out by computer, and the theoretical engine performance is com¬pared with the actual engine performance which is offered from engine manufacturer. Following results are acquired by this study. The mean effective pressure is increased with decrease of excess air factor or increase of scavenging pressure ratio. As the admission ratio or total efficiency of tur¬bine is increased, the mean effective pressure is increased but the specific fuel consumption is decreased. Mean calculation error compared with the actual engine performance is under 5 per¬cents, therefore, this calculation method can be used in the design of diesel engine.

  • PDF

The performance improvement of the diesel engine by the ultrasonic vibrations (초음파진동을 이용한 디젤기관의 성능향상에 관한 연구)

  • 정명진;조규상;류정인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.65-71
    • /
    • 1991
  • This paper describes briefly the effect of ultrasonic vibrations on the performance of four cycle diesel engine. Experiments were carried out to clarify the effect of ultrasonic vibrations on the characteristics of viscosity, structure of diesel oil, fuel consumption rate, brake thermal efficiency, smoke emissions, cylinder pressure of engine. The results are obtained as follows: 1. The ultrasonic vibrations of diesel oil result in the decrease of kinematic viscosity, Brachness Index of diesel oil. 2. The ultrasonic vibrations of diesel oil result in the decrease of fuel consumption rate, the improvement of brake thermal efficiency of engine. 3. The ultrasonic vibrations of diesel oil result in the decrease of smoke emissions of engine.

  • PDF

Effectiveness and Characteristics Analysis of Inertia Driving on Fuel-Cut Zones in Urban Highway (도시부도로 연료차단구역의 관성주행 특성 및 효과분석)

  • Choi, Eun Jin;Kim, Eungcheol;Kim, Yong Jin;Yang, Joo Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • In this study, the effects of inertial driving on a fuel-cut zone were analyzed by measuring the instantaneous variations of fuel consumption and speed. Thirteen sites with 2-8% downhill slopes were selected for the vehicle experiments. The vehicles were driven on the sites in two different driving modes, and the various vehicle states were measured using OBD under driving. For the analysis of the effects of inertial driving, the characteristics of fuel consumption, speed, and rpm were compared between normal and inertial driving. As a result, the fuel consumption was reduced from 24% to 78% according to the downhill grade. The amount of fuel consumption reduction was about 30cc for driving 500m downhill. Fuel cost savings amounting to 35 billion won can be achieved if inertial driving will be done in the case of Munemi-ro3. It is also believed that the reduced fuel consumption and vehicle speed through inertial driving will have considerable environmental and safety benefits.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition (Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어)

  • Kwon, Min-Su;Lee, Min-Kwang;Kim, Jun-Soo;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.