• Title/Summary/Keyword: fuel cladding

Search Result 410, Processing Time 0.027 seconds

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.

Segmented mandrel tests of as-received and hydrogenated WWER fuel cladding tubes

  • Kiraly, Marton;Horvath, Marta;Nagy, Richard;Ver, Nora;Hozer, Zoltan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2990-3002
    • /
    • 2021
  • The mechanical interaction between the fuel pellet and the cladding tube of a nuclear fuel rod is a very important for safety studies as this phenomenon could lead to fuel failure and release of radioactivity. To investigate the ductility of cladding tubes used in WWER type nuclear power plants, several mandrel tests were performed in the Centre for Energy Research (EK). This modified mandrel test was used to model the mechanical interaction between the fuel pellet and the cladding using a segmented tool. The tests were conducted at room temperature and at 300 ℃ with inactive as-received and hydrogenated cladding ring samples. The results show a gradual decrease in ductility as the hydrogen content increases, the ductile-brittle transition was seen above 1500 ppm hydrogen absorbed.

Effect of Cooling Rate on the Behavior of the Embrittlement in Zircaloy-4 Cladding (냉각속도가 지르칼로이-4 피복관의 취성에 미치는 영향)

  • Kim, Jun Hwan;Lee, Myoung Ho;Choi, Byoung Kwon;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 2005
  • Study was focused on the effect of the cooling rate on the embrittlement behavior of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment. Claddings were oxidized at given temperature and given time followed by various water quenching in the range of $0.6^{\circ}C$ and $100^{\circ}C$ per second. Cladding failed after water quenching above the threshold oxidation. Threshold oxidation was decreased as the cooling rate increased, which is due to the matensite structure formed during fast cooling rate.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Investigation of Pellet-Clad Mechanical Interaction in Failed Spent PWR Fuel

  • Jung, Yang Hong;Baik, Seung Je
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.175-181
    • /
    • 2019
  • A failed spent fuel rod with 53,000 MWd/tU from a nuclear power plant was characterized, and the fission products and oxygen layer in the pellet-clad mechanical interaction region were observed using an EPMA (Electron Probe Micro-Analyzer). A sound fuel rod burned under similar conditions was used to compare and analyze, the results of the failed fuel rod. In the failed fuel rod, the oxide layer represented $10{\mu}m$ of the boundary of the cladding, and $35{\mu}m$ of the region outside the cladding. By comparison, in the sound fuel rod, the oxide layer was $8{\mu}m$, observed in the cladding boundary region. The cladding inner surface corrosion and the resulting fuel-cladding bonding were investigated using an EPMA. Zirconium existed in the bonding layer of the (U, Zr)O compound beyond the pellet cladding interaction gap of $20{\mu}m$, and composition of UZr2O3 was observed in the failed fuel rod. This paper presents the results of the EPMA examination of a spent fuel specimen, and a technique to analyze fission products in the pellet-clad mechanical interaction region.

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.