• 제목/요약/키워드: fuel cladding

검색결과 416건 처리시간 0.026초

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

HIGH BURNUP CHANGES IN UO2 FUELS IRRADIATED UP TO 83 GWD/T IN M5(R) CLADDINGS

  • Noirot, J.;Aubrun, I.;Desgranges, L.;Hanifi, K.;Lamontagne, J.;Pasquet, B.;Valot, C.;Blanpain, P.;Cognon, H.
    • Nuclear Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.155-162
    • /
    • 2009
  • Since the 90's, EDF and AREVA-NP have irradiated, up to very high burnups, lead assemblies housing $M5^{(R)}$ cladded fuels. Post-irradiation examination of high burnup $UO_2$ pellets show an increase in the fission-gas release rate, an increase in fuel swelling, and formation of fission-gas bubbles throughout the pellets. Xenon abundances were quantified, and phenomena leading to this bubble formation were identified. All examinations provided valuable data on the complex state of the fuel during irradiation. They show the good behavior of these fuels, exhibiting various microstructures at very high burnups, none of which is likely to lead to problems during irradiation.

Analysis of LOFT LP-02-6 Experiment Using RELAP5/MOD3.2

  • Park, Tong-Soo;Lee, Jae-Hoon;Park, Byung-Suh;Cho, Chang-Sok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.357-362
    • /
    • 1996
  • LOFT LBLOCA test, LP-02-6 was analyzed using RELAP5/MOD3.2. It has a distinguished thermal-hydraulic phenomenon of a positive bottom-up core flow in tile blowdown phase. A modified nodalization which is based on that used in LP-LB-1 calculation by Lubbesmeyer was used in the calculation. RELAP5/MOD3.2 predicted overall system hydraulic behavior relatively well. However, the bottom-up quenching in the middle part of the core was not predicted sufficiently. It was demonstrated also that the peak cladding temperature can be predicted well by adjusting a discharge coefficient. But more improvements are needed in order to apply this code to actual plants with less user dependency.

  • PDF

핵연료 피복관의 후우프 거동시험을 위한 시편의 최적형상 평가 (Evaluation of Optimized Ring Specimen Shape for the Hoop Behavior Test of Nuclear Fuel Clad Tube)

  • 서기석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.171-178
    • /
    • 2000
  • In order to evaluate the tensile behaviors of hoop direction for the nuclear fuel cladding tubes the shapes of specimen and jig fixtures for the ring test are decided with various conditions under the elastic-large plastic deformations. The axial displacement of the jig cylinders is converted to the circumferential direction elongations of specimen. The stress distributions on specimen are depended on the radii and locations of specimen and jig size and central angle. Therefore we calculated the stress distributions and decided the optimum shapes to get the uniform stress in the area of specimen gage length. Form the analysis the stress distributions in gate area are reviewed with the radii and location of specimen notch and the central angle of jig cylinder,. The optimum shapes of specimen and jig are proposed to the clad tube having 10.62 mm in diameter and 0.63mm in thickness for 16x16 PWR nuclear fuel assembly.

  • PDF

핵연료봉의 PCI파손에 영향을 미치는 인자들의 거동분석 (The Behaviors of the Material Parameters Affecting PCI Induced-Fuel Failure)

  • Sim, Ki-Seob;Woan Hwang;Sohn, Dong-Seong;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.241-245
    • /
    • 1988
  • 핵연료봉의 PCI 파손은 원자로의 운전제한과 밀접한 관계가 있기 때문에, 출력급증 조건에서 핵연료봉의 PCI 파손을 지배하는 파손인자들의 거동을 검토하는 것은 매우 중요하다. 본 연구에서는 피복관에서의 원주방향 응력, 원주방향 변형도, 원주방향 주름 높이, 크립 변형율 및 변형도 에너지등의 파손인자들에 대한 거동특성을 핵연료봉 성능해석용 전산코드인 FEMAXI-IV를 이용하여 출력급증량 및 출력증가율의 운전인자들의 함수로 검토하였다.

  • PDF

INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

  • Kim, Hyun-Gil;Kim, Il-Hyun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.505-512
    • /
    • 2013
  • Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test) were performed at room temperature at a strain rate of $1.7{\times}10^{-3}s^{-1}$ for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n) variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

Effects of Gap Resistance and Failure Location on prompt Fission Gas Release from a Cladding Breach

  • Tak, Nam-Il;Chun, Moon-Hyun;Ahn, Hee-Jin;Park, Jong-Kil;Rhee, In-Hyoung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.184-189
    • /
    • 1997
  • A prompt fission gas release model incorporating the resistance to gas flow in the gap was developed and the effects of gap resistance and failure location on prompt fission gas release from the cladding breach were assessed. The process of prompt fission gas release from the plenum and gap into the coolant was modeled in accordance with three major phenomena: (1) transient gas flow in the gap, (2) the growth of the fission gas bubble while it is still attached to the breach, and (3) the detachment of the fission gas bubble from the breach and mixing with the coolant. The cumulative mass release fraction by the present model was calculated for the case of Young-Gwang 3 & 4 nuclear fuel rod as a typical example. The results showed that the release behavior of prompt fission gas with time was different from the frictionless model which has frequently been used in a simplified approach, and that the location of cladding failure was another key factor for the prompt fission gas release process due to the resistance in the gap.

  • PDF

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

핵연료 조사시험용 온도센서 피복재의 레이저용접 연구 (A Study on the Laser Welding of Cladding Tube with Temp. Sensor for Fuel Irradiation Test)

  • 김수성;이철용;김웅기;이정원;고진현;이영호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.106-108
    • /
    • 2005
  • The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15 mm. The soundness of welding area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various a pplications in the industry.

  • PDF