• Title/Summary/Keyword: fuel cladding

Search Result 416, Processing Time 0.038 seconds

Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics

  • Jung, Yang-Il;Park, Jung-Hwan;Kim, Hyun-Gil;Park, Dong-Jun;Park, Jeong-Yong;Kim, Weon-Ju
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1009-1014
    • /
    • 2016
  • SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ~0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ~100 MPa. The joint interface consisted of $TiSi_2$, $Ti_3SiC_2$, and SiC phases formed by a diffusion reaction of Ti and Si.

Requirements for the Transportation of Spent Nuclear Fuel (SNF) in Terms of Fuel Integrity and Data Needed According to

  • Noh, J.S.;Kim, Y.K.;Kim, T.W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.115-116
    • /
    • 2017
  • For the safe transportation of SNF and licensing, the integrity of SNF should be evaluated carefully. Researches to obtain the data for SNF cladding properties, i.e. impact toughness, DBTT (hydride behavior) when evaluating transportation of SNF, shall be precisely implemented by simulating the condition of real SNF to the hilt, accordingly.

  • PDF