• Title/Summary/Keyword: fuel cell stack

Search Result 490, Processing Time 0.024 seconds

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

A Study on Optimal Design and Operational Features of a Stand-alone 500W PEMFC System (독립형 500W PEMFC 시스템의 최적 설계 및 구동 특성에 관한 연구)

  • Park, Se-Joon;Ha, Min-Ho;Choi, Hong-Jun;Cha, In-Su;Yoon, Jeong-Phil;Lim, Jung-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.320-322
    • /
    • 2008
  • The international oil price now has been going up every each day, about 120 USD per a gallon April 2008, so that most of countries in the world are concern of the the shortage of petroleum and the development of new and renewable energy resources. This paper presents optimal design and operational features of stand-alone 500W PEMFC(Proton Exchange Membrane Fuel Cell) system which can be a substitute instead fossil fuel. The stack of PEMFC is composed of 35 laminated graphites, and a unit cell of the stack has electrical characteristics as below; 14W, 0.9V, 15A. The other components of BOP(Balance of Plant) are composed of hydrogen and nitrogen tanks, regulators, 3way solenoid valves, mass flow meters, etc.

  • PDF

Development of Bipolar Plate Stack Type Microbial Fuel Cells

  • Shin, Seung-Hun;Choi, Young-jin;Na, Sun-Hee;Jung, Seun-ho;Kim, Sung-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.281-285
    • /
    • 2006
  • Microbial fuel cells (MFC) stacked with bipolar plates have been constructed and their performance was tested. In this design, single fuel cell unit was connected in series by bipolar plates where an anode and a cathode were made in one graphite block. Two types of bipolar plate stacked MFCs were constructed. Both utilized the same glucose oxidation reaction catalyzed by Gram negative bacteria, Proteus vulgaris as a biocatalyst in an anodic compartment, but two different cathodic reactions were employed: One with ferricyanide reduction and the other with oxygen reduction reactions. In both cases, the total voltage was the mathematical sum of individual fuel cells and no degradation in performance was found. Electricity from these MFCs was stored in a supercapacitor to drive external loads such as a motor and electric bulb.

Analysis of the Effects of CO Poisoning and Air Bleeding on the Performance of a PEM Fuel Cell Stack using First-Order System Model (일차계 모델을 이용한 고분자전해질 연료전지 스택의 CO Poisoning 및 Air Bleeding 효과 분석)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.370-375
    • /
    • 2013
  • We analyze the effects of CO poisoning and air bleeding on the performance of a PEM (polymer electrolyte membrane) fuel cell stack fabricated using commercial MEA (membrane electrode assembly). Dynamic response data from the experiments on the performance of a stack are identified by obtaining steady-state gains and time-constants of the first-order system model expressed as a first-order differential equation. It is found that the cell voltage of the stack decreases by 1.3-1.6 mV as the CO concentration rises by 1 ppm. The time elapsed to reach a new steady state after a change in the CO concentration is shortened as the magnitude of the change in the CO concentration increases. In general, the steady-state gain becomes bigger and the time-constant gets smaller with increasing the air concentration (air-bleeding level) in the reformate gas to restore the cell voltage. However, it is possible to recover 87%-96% of the original cell voltages, which are measured with free of CO, within 1-30 min by introducing the bleed air as much as 1% of the reformate gas into the stack.

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Enhanced Diffusion in a Polymer Electrolyte Membrane Fuel Cell Using Pulsating Flow (연료전지 내에서의 왕복유동을 이용한 확산증대 효과에 대한 연구)

  • Hwang, Yong-Sheen;Choi, Jong-Won;Lee, Dae-Young;Kim, Min-Soo;Lee, Dea-Heung;Kim, Seo-Young;Cho, Sung-Ho;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.185-189
    • /
    • 2010
  • This study considered the feasibility of controlling the air concentration by oscillating flow in fuel cell channels. The fuel cell stack performance is largely influenced by the air concentration. If the air concentration is lower than 2.5 times the stoichiometric of the inlet air, the fuel cell stack performance seriously deteriorates because of air starvation. In this respect, optimizing the air concentration is crucially important to maximizing the fuel cell stack performance. In this work, the effects of oscillating actuation were studied to control the concentration. Studies have shown that there are two non-dimensional key parameters related to the frequency and oscillating amplitude. This paper presents how those parameters affect the performance of the stack.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Recent Advances in Cold-Start and Drive Capability of Fuel Cell Electric Vehicle

  • Sung, Woo-Suk;Suh, Kyung-Won;Kweon, Soon-Gil;Park, Jong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.47-50
    • /
    • 2008
  • The sub-zero cold is a major environmental consideration for the operational readiness of FCEVs because fuel cells produce water and utilize wet air with varying water content to generate electricity. Typical fuel cells thus have a fatal flaw in freezing conditions at startup. This drawback becomes more serious with the outsourced fuel cell that is entirely water-based for its internal humidification. In this background, the HMC's self-designed fuel cell was developed as an alternative and was employed in the Tucson-based FCEV in 2006 demonstrating its good cold-startup characteristics. The cold-startup capacity of the vehicle was validated through tests in the cold chamber and on the road, resulting in 50% stack power achieved in 250 seconds at $-15^{\circ}C$.

  • PDF

Fundamental Study on System Design as Load Character of the capacity Small Fuel Cell Vehicle (소형연료전지 자동차의 부하특성에 따른 시스템 설계에 관한 기초연구)

  • Kim H. G.;Kang Y W.;Kim Y. S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.75-80
    • /
    • 2004
  • Feasibility of the small capacity fuel cell powered vehicle is carried out for system design with loading characteristics. The major design concepts which include battery, driving motor, and fuel cell module are analyzed and discussed for the future development. A load characteristics program is developed in order to calculate the traction power of fuel cell vehicle according to the driving courses specified. Further, the small capacity fuel cell vehicle is analyzed to determine the capacity of stack as a function of the velocity for an appropriate power required.

Performance Analysis of a Combined Scroll Expander-compressor unit for a Fuel Cell System (연료전지용 스크롤 팽창기-압축기 성능해석)

  • Kim, S.J.;Ahn, J.M.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • This paper introduces a conceptual design of a combined scroll expander-compressor unit for a fuel cell. Since air discharged out of the fuel cell stack has still high pressure energy, some power can be extracted from the air by directing it to pass through an expanding device. Such extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed for a 1kW-class fuel cell. The orbiting scroll members of the expander and the compressor were made to share three of common drive shafts installed in the mid frame plate. Performance analysis for the combined expander-compressor unit showed that the installation of this unit could reduce the auxiliary power consumption in the fuel cell by about 42%.

  • PDF