• Title/Summary/Keyword: fuel cell flow design

Search Result 148, Processing Time 0.027 seconds

Three-Dimensional Modeling and Simulation of a Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택에 대한 3차원 모델링 및 모사)

  • An Hyun-shik;Kim Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.40-48
    • /
    • 2000
  • A fuel cell is an electrochemical device continuously converting the chemical energy in a fuel and an oxidant to electrical energy by going through an essentially invariant electrode-electrolyte system. Phosphoric acid fuel cell employs concentrated phosphoric acid as an electrolyte. The cell stack in the fuel cell, which is the most important part of the fuel cell system, is made up of anode where oxidation of the fuel occurs cathode where reduction of the oxidant occurs; and electrolyte, to separate the anode and cathode and to conduct the ions between them. Fuel cell performance is associated with many parameters such as operating and design parameters associated with the system configuration. In order to understand the design concepts of the phosphoric fuel cell and predict it's performance, we have here introduced the simulation of the fuel-cell stack which is core component and modeled in a 3-dimensional grid space. The concentration of reactants and products, and the temperature distributions according to the flow rates of an oxidant are computed by the help of a computational fluid dynamic code, i.e., FLUENT.

  • PDF

Design of a 100 kW MCFC Stack and Power Generation System (100 kW급 용융탄산염 연료전지 스택 및 발전 시스템 설계)

  • Koh, Joon-Ho;Kang, Byoung-Sam;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.146-151
    • /
    • 2001
  • Several design parameters for a 100 kW molten carbonate fuel cell stack was described. Approximately 170 cells are required to generate 100 kW at a current density of $125\;mA/cm^{2}$ with $6000\;cm^{2}$ cells. An overall heat balance was calculated to predict exit temperature. In order to limit the stack temperature in the range of $600-700^{\circ}C$, current load cannot exceed $75\;mA/cm^{2}$ at atmospheric operation. The 100 kW power is expected only under pressurization. Recycle of cathode gas by more than 50% is recommended to run the stack at $125\;mA/cm^{2}$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition.

  • PDF

Characterization of Fuel Cell Stack Using Hydrocarbon Polymer-Silica Composite Membranes (탄화수소계 고분자-실리카 복합막이 적용된 연료전지 스택 성능평가)

  • Hyun Woo Kang;Doo Sung Hwang;Chi Hoon Park;Young Moo Lee
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.127-136
    • /
    • 2023
  • In this study, the electrochemical performance of a 5-layer fuel cell stack using silica composite membranes as polymer electrolyte membranes was evaluated. It was observed that the flow rate of the fuel gases plays a crucial role in stack performance, particularly being mainly dependent on the flow rate of hydrogen. Increasing the flow rate of oxygen resulted in negligible changes in performance, whereas an increase in the flow rate of hydrogen demonstrated performance improvements. However, this led to an imbalance in the ratio of hydrogen to oxygen flow rates, causing significant degradation in stack performance and durability. A decline in stack performance was also observed over time due to the degradation of stack components. This phenomenon was consistently observed in individual unit cells. Based on these findings, it was emphasized that, in addition to optimizing the performance of each component during stack operation, it is important to optimize design and operating conditions for uniform flow rate control. Lastly, the developed silica composite membrane was assessed to have sufficient performance for application in actual fuel cell systems, exhibiting a performance of over 25 W based on maximum power.

Characteristics of Design Parameters on the Regenerative Blower Used for Building Fuel Cell System (건물 연료전지용 재생블로어 설계변수 특성연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.739-744
    • /
    • 2012
  • This paper describes the blower performance used for single-stage high pressure regenerative blower. The blower considered is widely applied to the field of a fuel cell system, a medical equipment and a sewage treatment plant. Flow rate and rotating frequency of a impeller of the blower are considered as design parameters for the proper operation of the blower. Three-dimensional Navier-Stokes equations are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation is obtained. Throughout a numerical simulation, it is found that small and stable vortical flow generated inside the blade passage is effective to increase pressure and efficiency of the blower. Large local recirculation flow having low velocity in the blade passage obstructs the generation of stable vortical flow, thus increases the pressure loss of the blower. Detailed flow field inside the blower is also analyzed and discussed.

An Effect of the Overlapping with the Anode and Cathode Flow Channel to PEMFC Performance (연료극과 공기극 유로의 겹침이 PEMFC 성능에 미치는 영향)

  • Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2009
  • PEMFC (Proton Exchange Membrane Fuel Cell) is a low temperature fuel cells which are high efficient and clean energy. But it has many problems like economical efficiency or durability. Because of this reason, many researchers challenge various view points. One of challenge is the flow channel design and many researchers develop new flow channel design. In addition to most of them have the anode and cathode's flow channel overlapped almost perfectly. In this case, the electrochemical reaction is almost done by the inertial force of flow. So we study on the effect of the anode and cathode's flow channel which aren't overlapped perfectly, have more diffusion effect, to PEMFC performance using CFD.

  • PDF

Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell (고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석)

  • Jang, HyunTak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC) (용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC) (용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics (CFD 모델링을 통한 연료전지용 디젤의 흡착탈황 반응기 디자인)

  • Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.229-234
    • /
    • 2015
  • Recently, there are increasing numbers of study regarding hydrogen fuels but researches on desulfurization of diesel are rare. In this study, we performed diesel desulfurization reactor design by computation fluid dynamics simulation. By analyzing the change in flow and sulfur concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We also studied the effects of permeability of the packed bed on the flow and sulfur concentration distribution. The present work can be utilized to design a diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

Comparison of fabrication cost of composite bipolar plates for PEM fuel cell: compression molding and machining (PEM 연료전지용 복합재 분리판의 제작비용 비교: 압축성형과 기계식 가공)

  • Lee, Hee-Sub;Chu, Won-Shik;Kang, Yun-Cheol;Kang, Hyuk-Jin;Ahn, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.105-108
    • /
    • 2006
  • The fuel cell is one of the promising environment-friendly energy sources for the next generation. The fuel cell provides good energy efficiency above 40% without pollution or noise. Different fuel cell types are usually distinguished by the kind of electrolyte. Among these, the proton exchange membrane fuel cell (PEMFC) has advantages of high power density. low operating temperature, relatively quick start-up, and rapid response to varying loads. The bipolar plate is a major component of the PEM fuel cell stack, and it takes a large portion of stack volume, weight and cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding and by machining. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding with design of experiments (DOE) to evaluate moldability. The cost for compression molding of graphite-composite bipolar plate was compared with machining cost to make the same bipolar plate.

  • PDF