• 제목/요약/키워드: fuel burn-up

검색결과 90건 처리시간 0.03초

MCFC 배가스용 촉매연소기 연소특성에 관한 연구 (A Study on the Combustion Characteristics of MCFC Offgas Catalytic Combustors)

  • 이상민;이연화;안국영;박인욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.132.1-132.1
    • /
    • 2010
  • Anode off-gas of high temperature fuel cells such as MCFC still contain combustible components such as hydrogen, carbon monoxide and hydrocarbon. Thus, it's very important to fully burn anode off-gas and use the generated heat in order to increase system efficiency. In the present study, catalytic combustors have been applied to high temperature MCFC system so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple commercial catalysts having different structures and compositions. In order to determine the design conditions of the catalytic combustor, parameters such as inlet temperature, space velocity and excess air ratio have been varied and optimized for combustor design. Results show that $H_2$ in off-gas assists $CH_4$ combustion in a way that it decreases minimum inlet temperature limit and increases maximum space velocity while keeping high fuel conversion efficiency.

  • PDF

매연여과장치 재생을 위한 플라즈마 응용 버너 개발 (Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter)

  • 차민석;이대훈;김관태;이재옥;송영훈;김석준
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.8-13
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can burn 20-60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter diesel engine can be raised up to around $600^{\circ}C$ for a wide range of engine speed (idle-3,000 rpm). The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

경수로사용후핵연료 폐피복관의 방사능 저감방안 (The Study on Radioactivity Reduction of Spent PWR Cladding Hull)

  • 정인하;김종호;박창제;정양홍;송기찬;이정원;박장진;양명승
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.381-387
    • /
    • 2003
  • 가압 경수로 사용후핵연료봉을 재처리하는 과정에서 발생되는 hull은 고준위 방사성폐기물로 분류되고 있다. 본 논문에서는 연소도 32,000MWd/tU, 냉각기간 15년(고리 1호기 cycle 4-7)인 PWR 사용후핵연료의 건식처리 공정에서 발생한 hull에 대하여 방사능적 특성 실험을 수행하였고, 문헌 조사 및 관련 코드의 계산을 통하여 가압 경수로 사용후핵연료 hull에 대한 방사화학적 특성을 조사하였다. 이를 토대로 hull에 부착되어 있는 핵물질을 레이저 또는 플라즈마 등의 건식 방법으로 제거함으로써 hull의 방사능을 저감시켜 중저준위 폐기물화하는 방안을 제시하였다.

  • PDF

원자로의 반응도와 온도계수 (Temperature Coefficient of Reactioity)

  • 노윤래
    • 전기의세계
    • /
    • 제15권5호
    • /
    • pp.1-5
    • /
    • 1966
  • The stability and safety of operation of a reactor is determined mainly by the sign and magnitude of its reactivity responses to temperature changes. Reactors are subject to temperature fluctuations due to the changes in reactor power and ambient temperature. These temperature fluctuations cause reactivity disturbances through changes in the nuclear and physical properties of the core. Because of these important phenomena by the temperature effects, a large portion of study and testing on a reactor design has been conducted. In this experiment the overall temperature coefficient of the TRIGA MARK-II reactor is measured. The basic procedure is to change the tgemperature of the water moderator, and from the movements of a newly recalibrated control rod(this is necessary due to the effects of fuel burn-up and control rod depression) required to mintain criticality, the reactivity worth of the temperature change is determined. From this measurement, the overall temperature coefficient seems to be smoothly varying, almost a linear function of temperature, and a value of approximately -0.267${\c}$/$^{\circ}C$ can be obtained for an average temperature range from $17.6^{\circ}C$ to $32.5^{\circ}C$.

  • PDF

핵연료 노내조사시험설비 설치공사 완료 (The Construction Work Completion of the Fuel Test Loop)

  • 박국남;이정영;지대영;박수기;심봉식;안성호;김학노;이종민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.291-295
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering & Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

핵연료 노내조사시험설비의 시공 현황 (The Construction Status of Fuel Test Loop Facility)

  • 박국남;이정영;김학노;유현재;유성연
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.305-309
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. The Commissioning of the FTL is to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

CANDU 사용후핵연료 수송용기 방사선차폐 영향평가 (Radiation Shielding Analysis of CANDU Spent Fuel Transport Cask)

  • 최종락;윤정현;강희영;이흥영;정성환
    • Journal of Radiation Protection and Research
    • /
    • 제18권2호
    • /
    • pp.27-35
    • /
    • 1993
  • 중수로형 원자로에서 방출되는 사용후핵연료 다발을 안전하게 운반할 목적으로 CANDU 수송용기에 대한 방사선차폐해석을 수행하였다. 핵연료의 연소도는 7,800MWD/MTU, 냉각기간은 5년으로 하여 ORIGEN2 코드로 방사선원을 구하고 이것으로 핵연료 378다발을 운반할 수 있는 수송용기의 차폐체 두께변화에 따른 선량을 영향을 비교하였다. 계산은 ANISN과 DOT4.2 코드를 사용하였으며, 해석결과 최적의 차폐구조를 선정 하였으며, 또한 IAEA 및 국내 원자력법의 수송법규에 명시된 정상수송 및 가상사고조건에 따른 차폐해석을 수행하여 CANDU 수송용기의 안전성을 입증하였다.

  • PDF

EPMA를 이용한 DUPIC 사용후 핵연료 핵분열 생성물의 특성 분석 (Analysis of High Radioactive Materials in Irradiated DUPIC SIMFUEL Using EPMA)

  • 정양홍;유병옥;주용선;이종원;정인하;김명한
    • 방사성폐기물학회지
    • /
    • 제2권2호
    • /
    • pp.125-133
    • /
    • 2004
  • 최대 선출력 61 ㎾/m 및 평균 연소도 1,770 ㎿d/tU의 조건으로 하나로에서 조사한 DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) 핵 연료를 EPMA (Electron Probe Micro Analyzer)를 이용하여 핵분열 생성물을 분석하였다. EPMA의 정확한 분석 방법을 확립하고자, 핵분열생성물 대신 시약을 첨가하여 제조한 모의 DUPIC 핵연료로 EPMA 분석을 수행하였고, 그 결과를 습식 화학 분석의 결과와도 비교하여 평가하였다. 모의 DUPIC 핵연료 중심부의 금속 석출물은 약 1 $\mu\textrm{m}$ 정도의 크기로 관찰되었으며, 이들의 조성은 Mo-53.89 at.%, Ru-37.40 at.% 및 Pd+Rh-8.71 at%이었다. 모의 DUPIC 핵연료 시험에서 정립한 시험방법으로 조사한 DUPIC 핵연료 시편의 금속 석출물 특성을 분석하였다. 핵연료 중앙부에서 관찰된 금속 석출물들의 크기는 2∼2.5 $\mu\textrm{m}$ 정도이었으며, Mo-47.34 at.%, Ru-46 at.%, Pd+Rh-6.65 at.%의 조성임을 확인하였다. 이 실험을 위하여, 특별히 시료의 전도성을 향상시키기 위한 처리를 하였으며, 작은 금속 석출물에 EPMA의 전자빔을 정확히 조사할 수 있는 실험 조건을 제시하였다.

  • PDF

Measurement of Ballooning Gap Size of Irradiated Fuels Using Neutron Radiography Transfer Method and HV Image Filter

  • Sim, Cheul-Muu;Kim, TaeJoo;Oh, Hwa Suk;Kim, Joon Cheol
    • 비파괴검사학회지
    • /
    • 제33권2호
    • /
    • pp.212-218
    • /
    • 2013
  • A transfer method of neutron radiography was developed to measure the size of the end plug and a gap of an intact K102L-2, the irradiated fuel of a ballooned K174L-3, a ballooned and ruptured K98L-3. A typical irradiation time of 25 min. was determined to obtain a film density of between 2 and 3 of SR X-ray film with neutrons of $1.5{\times}10^{11}n{\cdot}cm^{-2}$. To validate and calibrate the results, a RISO fuel standard sample, Cd plate and ASTM-BPI/SI were used. An activated latent image formed in the $100{\mu}m$ Dy foil was subsequently transferred in a dark room for more than 8 hours to the SR film which is a maximum of three half-lives. Due to the L/D ratio an unsharpness of $9.82-14{\mu}m$ and a magnification of 1.0003 were given. After digitizing an image of SR film, the ballooning gap of the plug was discernible by an H/V filter of image processing. The gap size of the ballooned element, K174L-3, is equal to or greater than 1.2 mm. The development of a transfer method played a pivotal role in developing high burn-up of Wolsung and PWR nuclear fuel type.

TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW

  • Hejzlar, Pavel;Petroski, Robert;Cheatham, Jesse;Touran, Nick;Cohen, Michael;Truong, Bao;Latta, Ryan;Werner, Mark;Burke, Tom;Tandy, Jay;Garrett, Mike;Johnson, Brian;Ellis, Tyler;Mcwhirter, Jon;Odedra, Ash;Schweiger, Pat;Adkisson, Doug;Gilleland, John
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.731-744
    • /
    • 2013
  • Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR) which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ~30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1) no reprocessing plants need to be built, 2) a reduced number of enrichment plants need to be built, 3) reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4) less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste burden. This paper describes the origins and current status of the TWR development program at TerraPower, LLC. Some of the areas covered include the key TWR design challenges and brief descriptions of TWR-Prototype (TWR-P) reactor. Selected information on the TWR-P core designs are also provided in the areas of neutronic, thermal hydraulic and fuel performance. The TWR-P plant design is also described in such areas as; system design descriptions, mechanical design, and safety performance.