• Title/Summary/Keyword: fuel burn-up

Search Result 89, Processing Time 0.031 seconds

Effects of Annealing and Neutron Irradiation on Micostructural and Mechanical Properties of High Burn-up Zr Claddings (고연소도 신형 Zr피복관의 미세조직과 기계적 특성에 미치는 열처리 및 중성자 조사의 영향)

  • Baek, Jong Hyuk;Kim, Hyun Gil;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.151-164
    • /
    • 2004
  • The changes of microstructural and mechanical properties were evaluated for the high burn-up fuel claddings after the neutron irradiation of $1.8{\sim}3.1{\times}10^{20}n/cm^2$ (E>1.0 MEV) in HANARO research reactor. After the irradiation, the spot-type dislocations (a-type dislocations) were easily observed in most claddings, and the density of the dislocations was different depending on the grains and was higher at grain boundaries than within grains. As the final annealing temperature increased, the density of spot-type dislocations increased and the line-type dislocations (c-type dislocations) which was perpendicular to the <0002> direction, appeared sporadically in some claddings. However, the types of precipitates in the fuel claddings after the irradiation were not changed from that in unirradiated claddings. The mechanical properties including the hardness, strength and elongation after the irradiation were changed due to the formation of spot-type dislocations. That is, the increase in hardness and strength as well as the decrease in elongation after the irradiation was occurred simultaneously with increasing the final annealing temperature. Owing to the Nb contribution to the formation of spot-type dislocation during the irradiation, the increase in hardness and strength in higher Nb-contained Zr alloys after the irradiation was higher than that in lower Nb-contained Zr alloys.

A Study on the Sensitivity of Self-Powered Neutron Detectors(SPNDs) and a new Proposal

  • Lee, Wanno;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.445-450
    • /
    • 1997
  • Self-Powered Neutron Detectors(SPNDs) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability of beta particle as a function of their birth position fur the typical geometry of rhodium-based SPNDs. Also, a simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation and the numerical method, the burn-up profile of rhodium density and the neutron sensitivity are calculated as a function of burn-up time in the reactor. The sensitivity of the SPNDs decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage.

  • PDF

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF

An Analysis on the Deep Geological Disposal Concepts Considering the Spent Fuel Length (사용후핵연료 길이에 따른 심지층 처분시스템 분석)

  • LEE, Jongyoul;KIM, Hyeona;LEE, Minsoo;CHOI, Heuijoo;KIM, Keonyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • Currently, 23 nuclear power plants are in operation at Kori, Uljin, Younggwang and Wolsong site and a reference deep geological disposal system has been developed for the spent fuels generated by them. The reference spent fuel for this disposal system has 4.5wt% of initial enrichment, 55 GWd/MtU of burn-up, and 40 years of cooling time. In this paper, to improve disposal efficiency and economic feasibility, the characteristics of spent fuels from nuclear power plants, such as type and burn-up, were reviewed. A disposal canister concept for shorter length and relatively lower burn-up spent fuels than the reference spent fuels was developed. Based on this canister concept, thermal analyses were carried out and a deep geological disposal concept was proposed. Measures of disposal efficiency such as unit disposal area and disposal density were compared between this disposal system and the reference disposal system. Also, economic feasibility, such as the volume reduction of copper, cast iron, and bentonite, was analyzed and the results of these analyses showed that the disposal system proposed in this paper has an efficiency of at least 20%. These results could be used for establishing spent fuel management policy and designing practical disposal systems for spent fuels.

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.