• Title/Summary/Keyword: fuel behavior

Search Result 1,169, Processing Time 0.028 seconds

Hydrothermal Behaviors and Long-term Stability of Bentonitic Buffer Material (벤토나이트 완충재의 열수거동 및 장기건전성 연구)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to-illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested to evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, whitens it might be converted to illite by 50 percent after over $5{\times}10^4$ year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository.

  • PDF

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (I) (정상초음파의 영향을 받는 메탄-공기 예혼합화염의 주파수-당량비 상관도 분석(I))

  • Kim, Min Sung;Kim, Jeong Soo;Koo, Jaye;Kwon, Oh Chae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2015
  • An experimental study was performed for the analysis of frequency-equivalence ratio correlation in the methane-air premixed flame influenced by ultrasonic standing wave. Evolutionary features of the propagating flame were caught by high-speed camera, and the variation of flame-behavior including local velocities was investigated in detail using a post-processing analysis of the high-speed images. It was found that propagation-velocity augmentation of the methane-air premixed flame by the intervention of ultrasonic standing wave was made in leaner mixture, but the velocity diminished when the strength of chemical reaction was saturated around the slightly fuel-rich side of stoichiometry.

The High Temperature Oxidation Behavior of l0wt%$Gd_2 O_3$- Doped $UO_2$

  • J.H. Yang;K.W. Kang;Kim, K.S.;K.W. Song;Kim, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.307-314
    • /
    • 2001
  • The changes of weight gain, structure, morphology and uranium oxidation states in l0wt% G $d_2$ $O_3$-doped U $O_2$ during the oxidation below 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using TGA, XRD, SEM, EPMA and XPS. The room temperature ( $U_{0.86}$G $d_{0.14}$) $O_2$Cubic Phase Converted to highly distorted ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type sing1e Phase by oxidation at 475 $^{\circ}C$ in air. This oxidized phase was reduced by annealing at 130$0^{\circ}C$ in air. The room temperature XRD pattern of the 130$0^{\circ}C$ annealed powder revealed that ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type single phase was separated into Gd-depleted $U_3$ $O_{8}$ and Gd-enriched ( $U_{0.7}$G $d_{0.3}$) $O_2$$_{+x}$ type cubic phase. The reduction and phase separation by the high temperature annealing of kinetically metastable and highly deformed ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type phase are interpreted in terms of cation size difference between G $d^3$$^{+}$ and U according to the oxidation state of U.U.U.U.U.te of U.U.U.U.U.

  • PDF

Tensile Properties of Zr-0.4Sn-1.5Nb-0.2Fe (Zr-0.4Sn-1.5Nb-0.2Fe 합금의 인장특성)

  • Lee M. H.;Kim J. H.;Choi B. K.;Jeong Y. H.
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.713-718
    • /
    • 2004
  • To study the dynamic strain aging behavior of Zr-0.4Sn-1.5Nb-0.2Fe sample tube for nuclear fuel cladding in the range of pressurized water reactor (PWR) operation temperature, the tensile tests of the tube specimens, which had been finally heat-treated at $470^{\circ}C\;and\;510^{\circ}C$, had been carried out with the strain rate $1.67{\times}10^{-2}/s\;and\;8.33{\times}10^{-5}/s$ at the various temperatures from room temperature to $500^{\circ}C$. It was observed that the elongation of the specimens got shortened as the temperature increased from $200^{\circ}C\;to\;340^{\circ}C$. The specimens that were finally heat-treated at $470^{\circ}C$ showed a plateau more remarkably on the plot of yield strength-temperature than those heat-treated at $510^{\circ}C$. In the range of $310\sim400^{\circ}C$, the strain rate sensitivity of the specimens finally heat-treated at $510^{\circ}C$ was $30.4\%\sim33.7\%$ lower but the work hardening exponent index of the specimens was a little higher than that without dynamic strain aging effect.

Study on Corrosion Characteristics of Zr-Sn and Zr-Nb-Sn Alloys (Zr-Sn 및 Zr-Nb-Sn 합금의 부식특성에 관한 연구)

  • Jeon, Chi-Jung;Jeong, Yong-Hwan;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.378-385
    • /
    • 1999
  • To evaluate the effect of Sn on the corrosion behavior of Zr alloys for nuclear fuel claddings, the corrosion tests on the binary Zr-xSn and the ternary Zr-0.4Nb-xSn alloys were performed in water at $360^{\circ}C$. The binary alloys containing 0.5, 0.8 and 1.5wt.% Sn showed the transition corrosion rate at 15 days. On the other hand, the binary alloy containing 2.0wt.% Sn showed a good corrosion resistance without the transition of corrosion rate up to 80 days. The corrosion rate of the ternary alloy increased with increasing Sn content. The difference of corrosion behaviors between binary and ternary alloys is considered due to the different solubility of Sn, Nb content and precipitates. The corrosions of Zr-xSn and Zr-0.4Nb-xSn alloys would be controlled by the fraction of tetragonal-$ZrO_2$and the amount of hydrogen pick-up.

  • PDF

A Study on Buzz Margin and Thrust Control of Supersonic Engine using PI Controller (PI 제어기를 이용한 초음속 엔진 버즈마진 및 추력제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.573-577
    • /
    • 2009
  • Dynamic behavior simulation of supersonic engine was performed and PI control algorithm was studied for the buzz control in the inlet and the thrust control. Firstly, required thrust was tracked according to the fuel flow control and then inlet pressure was regulated through the nozzle throat area control so that the buzz margin has the positive all the time. The control was performed according to the change of flight Mach number, altitude and angle of attack. The proportional gain and the integral gain for regulating the buzz margin was induced and simulated. In the results, it was confirmed and satisfied that control target in the operating area was changed the angle of attack from $0^{\circ}$ to $10^{\circ}$ at the flight Mach number of 2.1~3.0.

  • PDF

Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier (입구온도 변화가 중공사형 나피온 막가습기의 성능에 미치는 영향에 대한 연구)

  • Hwang, Jun-Young;Chang, Hyo-Sun;Kang, Kyung-Tae;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.361-369
    • /
    • 2011
  • The effect of an increase in the temperature of inlet air on the performance of a membrane humidifier for a PEMFC (Polymer Electrolyte Membrane Fuel Cell) vehicle was investigated both experimentally and numerically. A shell-and-tube type gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling was also conducted in simplified geometry of a single tube to explain this nonlinear behavior. The simulation revealed that the local water flux varies nonlinearly and dramatically along the tube. The analysis was based on the inverse relationship between the increase in temperature and decrease in relative humidity, both of which seriously affect the water conductivity of the membrane.

Characteristics of Smoke Propagation in Railway Tunnels with Rescue Station (구난역을 갖는 철도 터널 내부의 연기거동 특성)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.13-18
    • /
    • 2009
  • The main objective of the present study is to investigate smoke propagation in railway tunnels with rescue stations. In particular, based on measurement of HRR (heat release rate) for pool fires formed at different locations, the influence of fire source location on smoke behavior is examined. The fuel is n-heptane and pool fires are generated with a square length 4cm. With the use of MVHS (Modified Volumetric Heat Source) model for fire source, extensive numerical simulations are performed by using the commercial code FLUENT (Ver.6.3) Predicted smoke temperatures and smoke propagation are discussed. From numerical predictions, it is found that ventilation systems may be necessary in the railway tunnels because the smoke moves along the tunnel, and consequently it enters the non-accident tunnel. It is also confirmed that the cross-passage and fire protection wall systems contribute to control the smoke.

Thermal-Hydraulic Analysis of Pipeline Transport System for Marine Geological Storage of Carbon Dioxide (이산화탄소 해양지중저장 처리를 위한 파이프라인 수송시스템의 열-유동 해석)

  • Huh, Cheol;Kang, Seong-Gil;Hong, Sup;Choi, Jong-Su;Baek, Jong-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.88-94
    • /
    • 2008
  • The concentration of atmospheric carbon dioxide (CO2), which is one of the major greenhouse gases, continues to rise with the increase in fossil fuel consumption. In order to mitigate global warming the amount of CO2 discharge to the atmosphere must be reduced. Carbon dioxide capture and storage (CCS) technology is now regarded as one of the most promising options. To complete the carbon cycle in a CCS system, a huge amount of captured CO2 from major point sources such as power plantsshould be transported for storage into the marine or ground geological structures. Since 2005, we have developed technologies for marine geological storage of CO2,including possible storage site surveys and basic design of CO2 transport and storage process. In this paper, the design parameters which will be useful to construct on-shore and off-shore CO2 transport systems are deduced and analyzed. To carry out this parametric study, we suggested variations in thedesign parameters such as flow rate, diameter, temperature and pressure, based on a hypothetical scenario. We also studied the fluid flow behavior and thermal characteristics in a pipeline transport system.