• Title/Summary/Keyword: fruit ripening

Search Result 191, Processing Time 0.034 seconds

Changes in Antioxidant Activity, Total Phenolics and Vitamin C Content during Fruit ripening in Rubus occidentalis (블랙 라스베리의 과실 성숙에 따른 항산화 활성, 총페놀 함량 및 비타민 C 함량 변화)

  • Park, Young-Ki;Choi, Sun-Ha;Kim, Sea-Hyun;Han, Jin-Gyu;Chung, Hun-Gwan
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.461-465
    • /
    • 2007
  • In this study, changes in the overall antioxidant properties and chemical constituents including total phenolics and vitamin C of R. occidentalis fruit during ripening are studied. The antioxidant activity was measured by the free-radical scavenging activity(DPPH method) and reducing power(potassium ferricyanide method). Although, the weight and diameter of R. occidentalis fruit were increased with the progress of ripening, antioxidant activity and total phenolics were decrease during ripening. The highest free-radical scavenging activity(at $125{\mu}g/m{\ell}$) and reducing power(at $100{\mu}g/m{\ell}$) in fruit were 61.67% and 0.71, respectively. Total phenolic content and vitamin C content in fruit of 5 days after fruit set were $220.73{\mu}g/g$ and $540.45{\mu}g/g$, respectively. A linear correlation(r=0.9761) was shown between free-radical scavenging activity and total phenolic content.

Changes in the Enzyme Activities, Pectins and Structure of Persimmon Fruit during Softening (감과실의 연화중 효소활성, 펙틴 및 조직의 변화)

  • 신승렬;문광덕;이광희;김광수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.611-616
    • /
    • 1993
  • This study was carried out to investigate change in the polygalacturonase and ${\beta}-galactosidase$ activities, pectins, cell wall structure of persimmon fruit during ripening and softening. Polygalacturonase and ${\beta}-galactosidase$ activities were not detected at turning stage. However polygalacturonase activities of mature and soft persimmon fruits were 55.01 and 206.70units/100g-fresh weight(fr. wt.), respectively. ${\beta}-Galactosidase$ activities of mature and soft persimmon fruits were 21.79 and 380.23unit/100g-fr. wt. respectively. The contents of total and insoluble pectins increased during maturation but decreased during softening. The content of water-soluble pectin increased during maturation and softening. The intercellular space was in larged during ripening, and middle lamella was degraded in mature persimmon fruit, and the cells of soft persimmon fruit were separated each other.

  • PDF

Characterization of a Tomato (Lycopersicon esculentum Mill.) Ripening-associated Membrane Protein (TRAMP) Gene Expression and Flavour Volatile Changes in TRAMP Transgenic Plants

  • Kim Seog-Hyung;Ji Hee-Chung;Lim Ki-Byung
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2005
  • The tomato ripening associated membrane protein (TRAMP) (Fray et al., 1994) is a member of the major intrinsic protein (MIP) family, defined as channels facilitating the passage of water and small solutes through membranes. During normal fruit ripening the TRAMP mRNA levels were increased whereas the expression levels of TRAMP in low ethylene ACO1-sense suppressed lines, Nr and rin fruits, were lower than at the breaker stage of wild type fruit. TRAMP mRNA is inhibited by $LaCl_3$, which is an inhibitor of $Ca^{2+}$-stimulated responses, treatment but drought condition did not affect TRAMP expression. The levels of TRAMP mRNA transcripts were substantially higher in the dark treated seedlings and fruits. These suggest that TRAMP function as a water channel may be doubted because of several reasons; no water content was changed during ripening in wild type, antisense and overexpression lines, TRAMP expression under light condition was lower than dark condition and TRAMP expression was not changed in drought condition. Co-suppression plant, 3588 was one of sense suppression lines, which contain CaMV 35S promoter and sense pNY507 cDNA, produced small antisense RNA, approximately 21-25 nucleotides in length, mediated post-transcriptional gene silencing. Therefore, TRAMP expression was inhibited by small antisense and multiple copies might induce gene silencing without any production of double strand RNA. Total seven selected volatile productions, isobutylthiazole, 6-methyl-5-hepten-2-one, hexanal, hexenal methylbutanal, hexenol, and methylbutanol, were highly reduced in sense line whereas total volatile production was increased in TRAMP antisense line. These results suggested TRAMP might change volatile related compounds.

Changes in Nutrient Composition, Antioxidant Properties, and Enzymes Activities of Snake Tomato (Trichosanthes cucumerina) during Ripening

  • Badejo, Adebanjo Ayobamidele;Adebowale, Adeyemi Philips;Enujiugha, Victor Ndigwe
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.90-96
    • /
    • 2016
  • Snake tomato (Trichosanthes cucumerina) has been cultivated and used as a replacement for Lycopersicum esculentum in many Asian and African diets. Matured T. cucumerina fruits were harvested at different ripening stages and separated into coats and pulps for analyses to determine their suitability for use in culinary. They were analyzed for the nutritional composition and antioxidant potential using different biochemical assays [1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, and ferric reducing antioxidant power] and antioxidative enzymes activities. The nutritional composition revealed that T. cucumerina contains over 80% water and is very rich in fiber, thus it can serve as a good natural laxative. The lycopene and ${\beta}$-carotene contents were especially high in the ripe pulp with values of $21.62{\pm}1.22$ and $3.96{\pm}0.14mg$/100 g, respectively. The ascorbic acid content was highest in the pulp of unripe fruit with a value of $56.58{\pm}1.08mg$/100 g and significantly (P<0.05) decreased as ripening progressed. The antioxidant potential of the fruits for the 3 assays showed that unripe pulp> ripe coat> ripe pulp> unripe coat. There were decreases in the antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activities, with the exception of catalase, as ripening progressed in the fruits. These decreased activities may lead to the softening of the fruit during ripening. Harnessing the antioxidative potential of T. cucumerina in culinary through consumption of the coats and pulps will alleviate food insecurity and help maintain good health among many dwellers in sub-Saharan Africa and Southeast Asia.

Optimal Harvest Time by the Seasonal Fruit Quality and Ripening Characteristics of Hardy Kiwifruit in Korea (다래 과실의 생육시기별 과실품질과 후숙 특성에 따른 수확적기)

  • Kim, Chul-Woo;Oh, Sung-Il;Kim, Mahn-Jo;Park, Youngki
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.353-358
    • /
    • 2014
  • In order to obtain the basic data that could be used to evaluate the harvest time of new hardy kiwifruit cultivars (Actinidia arguta 'Saehan', 'Daesung' and 'Chilbo'), the seasonal fruit quality and ripening characteristics of hardy kiwifruit were investigated. Fruit sizes of 'Saehan', 'Daesung' and 'Chilbo' were increased from full bloom to 66 days, 85 days and 78 days, respectively. The growth curve of developing fruit of three cultivars showed double sigmoid. As a result of correlation analysis, the seed number per fruit showed a significant positive correlation with fruit weight (r = 0.94~0.97, p<0.01). Fruit length, width, thickness, weight, soluble solid content and titratable acidity were significantly different among the cultivars. Titratable acidity was increased from full bloom to harvest time and the titratable acidity of 'Saehan', 'Daesung' and 'Chilbo' were 1.77%, 1.22% and 1.37% on havest time, respectively. Optimal harvest time of 'Saehan' was 108 days (23 Sep.) after full bloom, those of 'Daesung' and 'Chilbo' were 92 (9 Sep.) days after full bloom.

Effects of ripeness degree on the physicochemical properties and antioxidative activity of banana (바나나 숙도에 따른 이화학적 특성 및 항산화 활성)

  • Kim, Jae-Won;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.475-481
    • /
    • 2013
  • This study was performed in order to compare the changes in fruit quality and antioxidant activity depending on the ripeness degree of the banana flesh and peel (unripe, ripe, and over ripe) when stored at room temperature for 6 days. The moisture contents showed differences such as the significantly lower maturity in the over ripe fruit peel and the moisture content increase in the fruit flesh during ripening. During the maturity stage, the L and b values decreased, while the a value increased. During ripening, the titratable acidity (TA) decreased, while the soluble solids contents (SS), sugar acid ratio (SS/TA), total sugar, and reducing sugar contents increased, respectively. Also during ripening, the glucose and the fructose contents increased considerably, thus resulting in the decrease of the sucrose content. In addition, this study revealed that the phenolic substance, which was part of the fruit skin, showed more favorable reaction to radical ability than the fruit flesh. Furthermore, the DPPH, ABTS radical scavenging ability, and reducing power showed better reaction for the fruit skin than for the fruit flesh, and there was a significant increase in the antioxidative activity as a result of the higher levels of phenolic substance. Therefore, maturity played an important role in changing the chemical composition and physiological activity of a banana. The unripe peels could be used as antioxidant ingredients and they could also enhance the biological activity in the utilization of by-products.

Evaluation of the Fruit Quality Indices during Maturation and Ripening and the Influence of Short-term Temperature Management on Shelf-life during Simulated Exportation in 'Changjo' Pears (Pyrus pyrifolia Nakai) (배 신품종 '창조'의 성숙 중 품질 요인 변화 및 수송온도 환경에 따른 반응성)

  • Lee, Ug-Yong;Choi, Jin-Ho;Ahn, Young-Jik;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.378-385
    • /
    • 2017
  • In this study, we evaluated the changes of fruit quality indices during fruit development and ripening in Korean new pear cultivar 'Changjo', developed from a cross between 'Tama' and '81-1-27' ('Danbae' ${\times}$ 'Okusankichi') in 1995 and named in 2009, to determine appropriate harvest time and to enhance the market quality and broaden the cultivation area. The fruits of 'Changjo' pears harvested from 132 days after full bloom (DAFB) to 160 DAFB. Fruit growth and quality indices were monitored at 1 week interval by measuring fruit weight, length, diameter, firmness, and taste related quality indices. The calculated fruit fresh weight increased continuously with fruit development and reached to an average of 594g on Sep. 20 (160 DAFB). The ratio of length to diameter declines as fruit maturation progress, resulting in 0.898 for ripe fruit stage as a round oblate shape. Flesh firmness of 'Changjo' pears showed over 30N until 153 DAFB and then decreased abruptly with fruit ripening, reaching a final level of about 26.44N on 160 DAFB. Starch content of fruit sap was also decreased abruptly after 146 DAFB which decreased almost half of the fruits harvested at 139 DAFB. In parallel with the decrease of flesh firmness, ethanol insoluble solids (EIS) content decreased sharply with fruit ripens, only 50% of EIS was detected on the fruits harvested on 160 DAFB when compared to that of the fruits harvested on 139 DAFB (Aug. 30). The maximum value of soluble solids contents was observed in the fruits harvested on 153 DAFB, resulting in $14.2^{\circ}Brix$. The changes of skin color difference $a^*$ which means loss of green color occurred only after 139 DAFB, coincide with the decrease of SPAD value of the fruit skin. The sugars of the 80% ethanol soluble fraction consisted mainly of fructose, sorbitol, glucose and sucrose, also increased during maturation and ripening. Fructose and sucrose contents were larger than those of glucose and sorbitol in flesh tissues. These results were explained that stored starch is converted to soluble sugars during fruit maturation, mainly in fructose and sucrose increasing the sweetness of this cultivar. Total polyphenols were increased up to middle of fruit maturation (146 DAFB) and then decreased continuously until the end of fruit maturation. Consequently, our results suggested that the commercial harvest time of 'Changjo' pears should not be passed 153 DAFB and late harvest of this cultivar would not good for quality maintenance during shelf-life. As a result of the post-harvest low-temperature acclimation experiment during the short-term transportation period, fruits harvested at 146 DAFB tended to maintain higher firmness after 14 days of simulated marketing at $25^{\circ}C$ compared to fruits harvested at 153 DAFB regardless of temperature set. And, the slower the rate of decrease to the final transport temperature of $5^{\circ}C$, the higher the incidence of internal browning and ethylene production. Therefore, in order to suppress the physiological disorder and to maintain the fruit quality when exporting to Southeast Asia in the 'Chanjo' pears, it is desirable to lower the temperature of the fruits within a short time after harvest and to set the harvest time before 146 days after full bloom.

Changes of Biologically Active Components in Prunus mume Fruit (수확시기별 매실의 생리활성 변화)

  • Seo, Kyoung-Sun;Huh, Chang-Ki;Kim, Yong-Doo
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.269-273
    • /
    • 2008
  • In this study, we investigated changes of general components and biological activity of the fruit of Prunus mume. The average moisture content of the fruit ranged from 88.34-90.04%. Crude protein and crude fat contents were not significantly different among samples. During ripening, crude protein decreased and crude fat increased. The level of polyphenols in the fruit gradually increased during ripening. An antimicrobial activity test indicated that methanol extracts had the highest activity and that the antimicrobial activity increased gradually with harvest time. Antimicrobial substances in methanol extracts of the fruit maintained their activity after heating at $100^{\circ}C$ for 30 minutes and were unaffected by changes in pH. The antioxidant activities of extracts isolated with different solvents were: methanol> ethylacetate > water> ether> hexane. Antioxidant activity was not significantly different for different harvest times. The antioxidant index of the methanol extract was also the highest in electron donating activity.

Studies on the Preservation of Apples by Plastic Film Coating (Plastic Coating에 의(依)한 사과의 저장연구(貯藏硏究))

  • Park, Nou-Poung
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.131-151
    • /
    • 1970
  • A new method of plastic film coating has been investigated to extend storage life of apples. The film coating was effected by dipping fresh apples in a plastic emulsion. The effect of plastic film coating on the preservation of freshness, respiratory activities and chemical components during storage, has been investigated on four leading varieties of apples. The results are summarized as follows: 1. The effect of film coating on storage life of apples was apparent, resulting in delay of after-ripening, shriveling, softening or physiological impediment as well as reducing consumption of reserve materials and waste fruits. 2. Change in the partial pressure of gas, i.e., increase in carbon dioxide and decrease in oxygen in apple tissue was resulted by the plastic film coating, suggesting that the film deposited on the fruit interfered with the diffusion of gases formed therein. 3. The effects of plastic film coating on the fruit storage varied with the type of plastic emulsions, coating temperature, varieties of apples and degree of fruit ripening. As regard to apple varieties, good results were obtained with PVA 217 for both American Summer Pearmain and Jonathan, and PVC 443 for McIntosh. 4. Reduction in the diminution rates of L-malic acid, ascorbic acid and soluble pectin etc. during storage of apples may account for the improved storage life of the fruits treated with plastic films.

  • PDF