• Title/Summary/Keyword: fruit anthracnose

Search Result 85, Processing Time 0.028 seconds

Antifungal Activities of Crude Extractum from Camellia semiserrata Chi (Nanshancha) Seed Cake Against Colletotrichum musae, Colletotrichum gloeosporioides and Penicillium italicum in vitro and in vivo Fruit Test

  • Meng, Xiangchun;Li, Jun;Bi, Fangcheng;Zhu, Lixue;Ma, Zhiyu
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.414-420
    • /
    • 2015
  • Antifungal activities of crude extractum of Nanshancha Seed Cake (NSC), to inactivate postharvest pathogens were investigated. Highest inhibitory rate was found against C. musae, C. gloeosporioides and C. papaya P.Henn, which was much stronger than that by tea saponin. Compared to tea saponin, effects of NSC extractum was relatively weak and similar on C. gloeosporioides Penzig and P. italicum. In an in vivo study, best controlling effects by NSC extractum was found with banana anthracnose disease development, which showed no inhibitory effects by tea saponin. NSC extractum controlled in vitro C. musae growth through directly inhibiting germination rate and germ tube elongation, and causing distortation, rupture and indentation of C. musae mycelium. In banana fruit subject to C. musae inoculation, higher PAL, POD, GLU and CHT activity was observed in banana fruit treated with crude NSC extractum than that of water control fruits. Current study proved the best controlling effects of crude NSC extractum in C. musae in vitro and in vivo development, which through direct inhibition of C. musae growth and increasing defense system of the banana fruit.

Isolation and Characterization of Colletotrichum Isolates Causing Anthracnose of Japanese Plum Fruit (자두 탄저병균의 분리 및 동정)

  • Lee, Yong-Se;Ha, Da-Hee;Lee, Tae-Yi;Park, Min-Jung;Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • BACKGROUND: Although the filamentous fungal pathogen Colletotrichum species causing anthracnose disease on various fruits including peach, apple, persimmon and grape, there is no report on Japanese plum in Korea. METHODS AND RESULTS: In 2016, diseased fruits showing typical anthracnose symptoms of Japanese plum were collected in market and ochards. Diseased tissue was cut off and disinfected subsequently with 70% ethanol for 1 min, and in 1% sodium hypochloride solution for 1 min, followed by three washes with sterile distilled water. The disinfected tissues were placed onto potato dextrose agar (PDA), and incubated at $25^{\circ}C$ in the dark for 5 to 7 days. For single-spore isolation, conidia were scraped off the plate using a loop, and suspended with 10 mL sterile distilled water. One hundred microliter of the conidial suspension was spread on PDA plates and incubated at $25^{\circ}C$. Finally, one germinated conidium was transferred onto PDA plates. Morphological and cultural characteries of colonies and spores of isolated Colletotrichum were observed after 7 to 10 days incubation on PDA. Molecular identification of isolates were analyzed by comparing rDNA-ITS gene sequences with NCBI GeneBank. CONCLUSION: Of eleven isolates of Colletotrichum isolated from anthracnose diseased Japanese plum fruits, six were identified as C. acutatum, and five as C. gloeosporioides based on diagnostic characteristics such as colony growth rate, shape and size of conidia, and rDNA-ITS sequences. This is the first report of Colletotrichum causing the anthracnose on Japanese plum in Korea.

Development and industrial applications of versatile-usable genes of plant (식물 유용 유전자의 발굴 및 산업적 응용)

  • Oh, Boung-Jun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.40-60
    • /
    • 2003
  • Fruit ripening represents a genetically synchronized system that involves developmental process unique to plant species, The phenomenon of ripening includes changes in color, texture, respiration rate, flavor, and aroma. Ripe fruits generally exhibit increased susceptibility to pathogen infection. However, fruits as a reproductive organ have their own protection mechanism against pathogens to maintain their integrity during seed maturation. In several nonclimacteric fruits, such as cherry, grape, and pepper, that do not have an ethylene burst during ripening, resistance against phytopathogens increases during ripening. Colletotrichum gloeosporioides is a causal agent of anthracnose disease in pepper plants (Capsicum annuum). We have established that C. gloeosporioides has susceptible and resistant interactions with pepper fruits during pre- and post-ripening stages, respectively. And we have interested in looking for a molecular mechanism that would explain the fungal resistance during ripening of nonclimacteric pepper fruit. In this presentation, a molecular characterization of the pepper esterase gene (PepEST) that is highly expressed in the resistant response will be demonstrated as an example of development and industrial applications of versatile-usable genes of plant.

  • PDF

Effects of Organic Composts on Soil and Yield Characteristics of Boxthorn(Lycium chinense Mill.) Organic Cultivation

  • Lee, Bo-Hee;Park, Young-Chun;Lee, Sox-Su;Lee, Byung-Joo;Kim, Yeong-Guk;An, Yeong-Seob
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.206-209
    • /
    • 2011
  • For the development of Boxthorn organic cultivation techniques, we investigated effect of several organic compost as a foundation fertilizer and growing plant fertilizer. And we adopted partly opening rain shelter greenhouse to protect anthracnose. In organic compost applying test yield characteristics of 'Mixed organic compost' treatment was the best but in betaine content measurement of dried fruit, 'Mixed organic compost and nitrogen guano' treatment was the best and it's chlorophyll and 100 fruit weight were also better than the other treatments.

Effect of Delayed Inoculation After Wounding on the Development of Anthracnose Disease Caused by Colletotrichum acutatum on Chili Pepper Fruit

  • Kim, Sang-Gyu;Kim, Yn-Hee;Kim, Heung-Tae;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.392-399
    • /
    • 2008
  • Detached chili pepper fruits were inoculated with the conidial suspension of Colletotrichum acutatum JC-24 simultaneously (simultaneous inoculation, SI) and at delayed time (delayed inoculation, DI) after wounding with (delayed wound inoculation, DWI) or without additional wounding (delayed non-wound inoculation, DNI) at the inoculation time. Disease severity was significantly lowered by DNI, compared to SI. By DNI, the disease reduction rates were proportional with the length of delayed time, and greater at the high temperature range (18, 23 and $28^{\circ}$) than at the low temperature ($13^{\circ}$) tested. DWI was also effective in reducing the disease severity especially at 18oC; however, its effectiveness was lower than for DNI. In light microscopy, parenchyma cells at the wounding sites were modified structurally, initially forming new cell walls crossing cytoplasm, enlarged with multiple periclinal cell divisions, and finally layered like wound periderms. In DWI, the above structural modifications occurred, showing the restriction of the fungal invasion by the cell walls in enlarged modified cells, while no definite cellular modifications were found with proliferation of fungal hyphae in SI. Sclerenchyma-like cells with thickened cell walls were proliferated around the wounding sites, which were partially dissolved by DWI, probably leading to some disease development. All of these results suggest that the decline of the anthracnose disease in pepper fruit by the delayed inoculations may be derived from the structural modifications related to the healing processes of the previous wound inflicted on the tissues.

In vitro Antifungal Activities of Fungicides against Japanese Plum Fruit Anthracnose Fungi (자두 탄저병균에 대한 살균제의 활성)

  • Jeong, Byeong-Ryong;Lee, Tae-Yi;Park, Min-Jung;Ha, Da-Hee;Chung, Jong-Bae;Lee, Yong-Se
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2018
  • BACKGROUND: In order to select a fungicide that can effectively control anthracnose disease in Japanese plum fruit, mycelial growth inhibition effect and spore germination inhibition effect of six fungicides were tested in vitro against six isolates of Colletotrichum acutatum and five isolates of C. gloeosporioides that were isolated from diseased Japanese plum fruit. METHODS AND RESULTS: Inhibitory effects of fungicides on mycelial growth were investigated after inoculating each isolate on potato dextrose agar amended with four discriminatory concentrations of each fungicide for 7 days at $25^{\circ}C$. For spore germination inhibitory effect, each isolate of the Colletotrichum spp. was cultured in potato dextrose agar for 7-14 days at $25^{\circ}C$. After adjusting the concentration of spores of each isolate to $1{\times}10^6mL^{-1}$ by diluting with 0.025% PDB, the spore suspension was mixed with each fungicide (1:4, v/v), and $60{\mu}L$ aliquots were dispensed to sterile hole slide glass. Hole slide glasses were placed in a humidified box and incubated for 15 hours at $25^{\circ}C$. Then, spore germination was observed under an optical microscope. At recommended concentration of fungicide prochloraz manganese showed the highest mycelial growth inhibitory effect and dithianon showed the lowest mycelial growth inhibition. The $EC_{50}$ values for the inhibition of spore germination by dithianon and pyraclostrobin were $0.069-0.126{\mu}g/mL$ and $0.37-1.59{\mu}g/mL$, respectively. Although benomyl, prochloraz manganese, azoxystrobin, and tebuconazole did not inhibit the spore germination, they appeared to restrain mycelial growth by abnormal growth of germ tube and mycelium after germination. CONCLUSION: Dithianon seemed to have preventive effect. Prochloraz manganese, azoxystrobin, and tebuconazole were likely to have control effect. Pyraclostrobin is considered to have both preventive and control effect against anthracnose disease of Japanese plum fruit.

Newly Recorded Problematic Plant Diseases in Korea and Their Causal Pathogens

  • Kwon, Jin-Hyeuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.25-27
    • /
    • 2003
  • Since 1993, a total of 50 problematic plant diseases unrecorded in Korea were surveyed in Gyeongnam province. Totally 34 new host plants to corresponding pathogens investigated in this study were 5 fruit trees, 9 vegetables, 12 ornamental plants, 3 industrial crops, and 5 medicinal plants. Among the newly recorded fruit tree diseases, fruit rot of pomegranate caused by Coniella granati and Rhizopus soft rot of peach caused by Rhizopus nigricans damaged severely showing 65.5% and 82.4% infection rate. Among the vegetable diseases, corynespora leaf spot of pepper caused by Corynespora cassiicola and the crown gall of pepper caused by Agrobacterium tumefaciens, powdery mildew of tomato caused by Oidiopsis taurica were the most severe revealing 47.6%, 84.7%, and 54.5% infection rate in heavily infected fields, respectively. In ornamental plants, collar rot of lily caused by Sclerotium rolfsii, gray mold of primula caused by Botrytis cinerea, soot leaf blight of dendrobium caused by Pseudocercospora dendrobium, sclerotinia rot of obedient plant caused by Sclerotinia sclerotiorum showed 32.7 to 64.8% disease incidence. On three industrial plants such as sword bean, broad bean, and cowpea, eight diseases were firstly found in this study. Among the diseases occurring on broad bean, rust caused by Uromyces viciae-fabae and red spot caused by Botrytis fabae were the major limiting factor for the cultivation of the plant showing over 64% infection rate in fields. In medicinal plants, anthracnose of safflower caused by Collectotrichum acutatum was considered the most severe disease on the plant and followed by collar rot caused by Sclerotium rolfsii.(중략)

  • PDF

Development of Rapid Molecular Detection Marker for Colletotrichum spp. in Leaf and Fruit Tissues of Sweet Persimmon

  • Iee, Sang-Pyo;Lee, Youn-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.989-992
    • /
    • 2002
  • Sweet persimmon (Diospyros kaki Thunb.) is widely cultivated in the southern part of Korea and its cultivation is increasing. However, anthracnose disease caused by Colletotricuhum species is one of the major hinderances to the cultivation and production of sweet persimmon. Therefore, in the current study, PCR was used to specifically detect Colletotrichum spp., based on the sequences of the ITS II regions in the rDNA. Using the sequence data, CO-1 was designated to detect Colletotrichum together the with ITS 4 primer. The result showed that a single segment of ca. 500 bp was observed only in Colletotrichum, but not in any other fungal and bacterial isolates. The annealing temperatures and template DNA quantites were also investigated to identify optimal conditions for detection. Using these species-specific primers, a unique band was obtained at annealing temperatures ranging from $55^{\circ}C\;and\;61^{\circ}C$ and template DNA levels from 10 pg- $10{\mu}g$.

Selection and a 3-Year Field Trial of Sorangium cellulosum KYC 3262 Against Anthracnose in Hot Pepper

  • Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.279-287
    • /
    • 2014
  • KYC 3262 was selected as a biocontrol agent against anthracnose on hot pepper from 813 extracts of myxobacterial isolates. Dual culture with Colletotrichum acutatum and 813 myxobacterial extracts was conducted, and 19 extracts were selected that inhibited germination and mycelial growth of C. acutatum. All selections were Sorangium cellulosum, which are cellulolytic myxobacteria from soil. With the infection bioassay on detached fruits in airtight containers, KYC 3262, KYC 3512, KYC 3279, and KYC 3584 were selected. The listed four myxobacteria were cultured in CSG/1 liquid media, and harvested filtrates were sprayed on the infected fruits. KYC 3262 was selected from the studies of attached fruit in a greenhouse study. KYC 3262 filtrate was applied for 3 years (from 2011 to 2013) in a field study in Asan, Republic of Korea. Control values of the KYC 3262 in the field were 31%, 89%, and 82% in 2011, 2012, and 2013, whereas values of the fungicide spray treatment were 19%, 97%, and 91%, respectively. Yields (kg/20 plants) of the KYC 3262 were 2.66 kg and 18.6 kg in 2011 and 2013, respectively, and those of the fungicide treatment were 2.0 kg and 20.2 kg, in 2011 and 2013, respectively.