• Title/Summary/Keyword: frozen temperature

Search Result 601, Processing Time 0.035 seconds

The Comparison and Distribution of Temperatures Established in Display Stands and Food Surfaces for Cold and Frozen Foods in large Discount Stores in Korea (대형할인매장에서의 냉장.냉동식품 판매대의 설정온도와 판매식품 표면온도 비교 및 온도분포 분석)

  • Choi, Moon-Sil;Choi, Jeong-Ae;Kim, Mee-Hye;Bahk, Gyung-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.308-314
    • /
    • 2011
  • This study surveyed and compared the temperatures established in display stands and food surfaces for cold and frozen foods in large discount stores in Korea. The temperatures established in display stands for cold food ranged with $3.5{\pm}1.8^{\circ}C$ as mean, minimum and maximum were $0^{\circ}C$ and $7^{\circ}C$. However, the surface temperatures of cold food on sale ranged with $10.7{\pm}2.9^{\circ}C$ as a mean, minimum $4.6^{\circ}C$ and maximum $18.4^{\circ}C$. Totally, the surface temperature of cold food on sale was $7.2^{\circ}C$, as a mean, higher than established in display stands for cold food in large discount stores in Korea. 53% of the surveyed cold foods were more than $10^{\circ}C$ in surface temperature and only 47% was less than $10^{\circ}C$. The differences between temperatures were lowest in fruits, salads and vegetables, but highest in milk products. On the other hand, the temperatures established in display stands for frozen food showed a range with $-20.7{\pm}1^{\circ}C$ as a mean. However, the surface temperatures of frozen food on sale showed a range with $-15.4{\pm}5^{\circ}C$ as a mean, minimum $-28^{\circ}C$ and maximum $-4.6^{\circ}C$ (included defrosting). The surface temperatures of frozen food, frozen meats, frozen processed foods and ice creams were $-13.8^{\circ}C$, $-15.9^{\circ}C$, and $-16.8^{\circ}C$, respectively. Only 32.3% of surveyed frozen foods showed less than $-18^{\circ}C$ in surface temperature. In conclusion, the temperatures established on cold and frozen food display stands were less than those of cold and frozen food surfaces on sale. There was also much variation in food surface temperatures during cold and frozen food storage and sales. Therefore, a temperature management system technology use at the distribution level for cold and frozen foods will be developed.

Current State for Temperature Management of Cold and Frozen Food Transportation Vehicles in Jeonbuk Province (전북권내 냉장·냉동식품 유통차량 온도관리 현황)

  • Park, Myoung-Su;Bahk, Gyung-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • To understand of the present state for temperature management of cold and frozen food transportation vehicles, we surveyed and measured the temperatures of eight transportation vehicles (including 3 small & medium and 5 large businesses) in Jeonbuk province, Korea. In the transportation vehicles of small & medium businesses, the mean temperature of cold and frozen foods was $8.35{\pm}5.72^{\circ}C$ and $-3.45{\pm}16.88^{\circ}C$; in large businesses, $3.92{\pm}1.44^{\circ}C$ and $-15.38{\pm}2.98^{\circ}C$, respectively. In the difference of temperature by the locations within transportation vehicles, the difference in each cold and frozen was $2.40{\pm}1.45^{\circ}C$ and $2.37{\pm}2.52^{\circ}C$, as a mean. But there was not statistically significant difference in locations between cold and frozen (p > 0.05). In the difference of surface temperatures on various foods before and after door opening during the loading, the temperatures of cold and frozen foods increased by $0.55^{\circ}C$ and $1.18^{\circ}C$, as means, respectively. The temperature of foods over time and placement of cold and frozen foods in transportation vehicles were not consistently maintained at optimal values in distribution. Therefore, the development of time-temperature history (TTH) system technology at the distribution level for cold and frozen foods is required.

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

Experimental and Numerical Investigation of the Performance of Vertical Thermosyphon for Frozen Ground Stabilization (실험과 수치해석을 통한 동토지반 안정화용 수직형 열사이펀의 성능평가)

  • Lee, Jangguen;Lee, Chulho;Jang, Changkyu;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.45-56
    • /
    • 2014
  • Frozen ground in cold region consists of an upper active layer and lower permafrost which is permanently frozen land. During the summer season, the air temperature is high enough to make the frozen ground melt, which causes the reduction of soil strength and thaw settlement. These phenomena result in structural instability, so it is necessary to apply frozen ground stability techniques. Thermosyphon is a closed natural two-phase convection device to maintain the ground temperature below $0^{\circ}C$ by extracting heat from the ground and discharges it into the atmosphere. Experimental and numerical investigation has been performed to estimate the effect of the refrigerant filling ratio in thermosyphon using R-134a refrigerant and the thermal conductance of the thermosyphon.

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng;Ke Xue;Jian Hu;Mingli Zhang;Desheng Li;Ping Yang;Jun Xie
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.145-156
    • /
    • 2024
  • The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

Comparative Assessment of Freshness Preservation in Vacuum-Packed Frozen Olive Flounder Paralichthys olivaceus and Mackerel Scomber japonicus Fillets During Room Temperature Distribution Using Varied Quantities of Commercially Available Cold Packs (시판 보냉팩 개수에 따른 진공포장 냉동 넙치(Paralichthys olivaceus) 및 고등어(Scomber japonicus) 필렛의 상온유통 중 선도유지능 비교평가)

  • So Hee Kim;Ji Un Lee;Eun Bi Jeon;Jin Kim;Pantu Kumar Roy;Shin Young Park;Jung-Suck Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.818-825
    • /
    • 2023
  • The surge in online seafood consumption has increased parcel delivery, leading to a need to implement effective preservation methods. As the cold chain system is not fully established in Korea, styrofoam boxes and cold packs are commonly used for low-temperature seafood distribution. The impact of cold packs on product preservation depends on the number utilized. Herein, the freshness of vacuum-packed frozen fish fillets (Paralichthys olivaceus and Scomber japonicus) stored at 25±0.5℃ for up to 84 h was measured. Chemical (pH and volatile base nitrogen), microbiological (viable cell count), and physical (odor intensity) properties were assessed using 2 or 4 cold packs in a styrofoam box. Four cold packs yielded lower values, indicating superior freshness, and extended fish freshness by approximately 12 h compared with two cold packs. Therefore, it is recommended to use a minimum of 4 cold packs (-350 g/cold pack) in a styrofoam box for distributing approximately 300 g of frozen fish fillets at room temperature during the summer, considering an average delivery period of 2 days in Korea.

Physicochemical Properties and Freshness of Spent Hen's Meat under Frozen or Refrigeration Conditions after Thawing

  • Gu, Hyo-Jung;Gu, Ja-Gyeong;Park, Jung-Min;Yoon, Su-Jin;Lee, Jeong-Soo;An, Ji-Hui;Kim, Jang-Mi;An, Byoung-Ki;Kang, Chang-Won;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.396-403
    • /
    • 2012
  • This study was conducted in order to investigate the effect of storage temperature abuse on the freshness of refrigerated and frozen spent hen's meat. After a room temperature storage condition, two different storage temperature were followed: refrigeration and frozen storage. All parts of the spent hen's meats were thawed at 4 d intervals up to 3 times (2, 6, and 10 d) for 24 h. The level of bacteria on the different parts of the refrigerated and frozen meats was higher than 6 Log CFU/g under the following storage conditions: refrigerated - breast, 12 h; leg, 6 h; wing, 12 h at the $1^{st}$ analysis, frozen - breast, 12 h at the $2^{nd}$ analysis; leg, 24 h at the $1^{st}$ analysis; wing, 12 h at the $1^{st}$ analysis. The pH value for the leg meat was higher than breast and wing meats. In the color measurements, under the room temperature storage condition, lightness and redness values decreased but the yellowness increased in refrigerated meats (p<0.05). The K-value regarding refrigerated leg meats exceeded 60%, which is the threshold value to evaluate the degree of freshness, during the $1^{st}$ analysis (p<0.05). The VBN value of refrigerated leg meat was the highest and reached up to 96.93 mg%. Thus, studies regarding the possible decline in quality according to the change of storage temperature could be used in order to establish a basic database for the quality control of spent hen meat being traded with other countries.

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.