• 제목/요약/키워드: front surface field

검색결과 117건 처리시간 0.034초

선박용 소형 프로펠러의 곡면 모델링 및 단일 셋업에 의한 4축 NC가공 데이터 생성에 관한 연구 (A Study on Geometric Modeling and Generation of 4-axis NC Data for Single Setup of Small Marine Propeller)

  • 이재현;이철수
    • 한국CDE학회논문집
    • /
    • 제7권4호
    • /
    • pp.254-261
    • /
    • 2002
  • Small marine propeller is generally machined by 5-axis machining. This paper suggests a method to create geometric model from point array data and 4-axis machining NC data for propeller. With conventional method, the setting posture should be changed, because propeller has front and back surface of wing. The change of setting posture has a bad influence on precision of propeller. So this paper pro-poses a method to machine propeller by single setup for 4-axis machining. The cutter moves to parallel direction of the XY plane. To determine the cutter orientation efficiently, the' tilting guiding line' is proposed. A proposed algorithm is written in C language and successfully applied to the 5-axis milling machine of industrial field.

자유곡면 프리즘 렌즈 사출용 코어 초정밀 형상 가공 (Ultra precision machining of the mold core for free surface prism lens)

  • 이동길;이학석;이종진;송민종;김상석;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.452-452
    • /
    • 2008
  • Abstract Head-mounted displays(HMD) are being developed and marketed in growing numbers for a variety of applications. Though most commonly associated with entertainment applications other applications are also being developed. The field vision on the display screens is expanded by the optical system producing an imaginary screen that appears to be positioned several meters in front of the viewer. In this study, the mold core for the prism lens of HMD was processed by fly-cutting method, and the form accuracy of the mold core was measured.

  • PDF

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

A model of roof-top surface pressures produced by conical vortices : Model development

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.227-246
    • /
    • 2001
  • The objective of this study is to understand the flow above the front edge of low-rise building roofs. The greatest suction on the building is known to occur at this location as a result of the formation of conical vortices in the separated flow zone. It is expected that the relationship between this suction and upstream flow conditions can be better understood through the analysis of the vortex flow mechanism. Experimental measurements were used, along with predictions from numerical simulations of delta wing vortex flows, to develop a model of the pressure field within and beneath the conical vortex. The model accounts for the change in vortex suction with wind angle, and includes a parameter indicating the strength of the vortex. The model can be applied to both mean and time dependent surface pressures, and is validated in a companion paper.

성층화된 수로에서 3차원 Hill에 의한 유속장 변동 (Numerical Study of Stably Stratified Flow over a Three­dimensional Hill in a Channel)

  • 박성은;김동선;이충일;황재동;윤종휘;조규대
    • 해양환경안전학회지
    • /
    • 제9권2호
    • /
    • pp.73-77
    • /
    • 2003
  • 본 연구에서는 성층화된 수로에서 3차원 hill과 같은 해저지형이 유동장에 미치는 효과를 수치실험을 통해 밝히고자 하였다. 계산결과 hill 주위의 유동장은 지형과 성층의 효과를 복합적으로 받는 것으로 나타났다. hill 배후에서 형성된 칼만와류는 성층효과로 인해 저층에서만 나타났다. 이러한 와류는 hill 중심의 밀도를 감소시켜 성층화된 열염구조를 불안정하게 하는 역할을 하였고 이로 인하여 등밀도선을 따라 흐르는 흐름은 hill 전면의 경우 깊어지는 등밀도선을 따라 하강한 뒤, 그 후면에서는 다시 등밀도선을 따라 상승하는 패턴을 나타내었다. 그 결과 연직유속은 hill의 전면에서는 침강류, 그 후면에서는 용승류가 형성되는 특징을 나타냄과 동시에 수평적으로 보았을 때 hill의 측면을 통해 가장 활발하게 용승이 발생하지만 표층까지 영향을 크게 미치지는 않는 것으로 나타났다.

  • PDF

이면전계(BSF)에의한 solar cell의 효율개선효과 (Efficiency improvement of solar cell by back surface field)

  • 소대화;강기성;박정철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1990년도 추계학술대회 논문집
    • /
    • pp.88-90
    • /
    • 1990
  • In this study, PN junction solar cell and P$\^$+/-N-N$\^$+/ BSF solar cell, using N-type(111), 10$\^$16/[atoms/cm$\^$-3/] wafer, were fabricated applying that ion implant method whose dose are 1E14, 1E15, 3E15 and its acceleration energy is 50Key, 100Key respectively. The impurity concentration of two types of front-side are 10$\^$18/[atoms/cm$\^$-3/] and back-side concentration for BSF solar cell is 10$\^$17/[atoms/cm$\^$-3/]. As a result of comparison for 2 typical types of cells out of various fabricated samples, open circuit voltage (Voc), short circuit current(Isc) of BSF solar cell are larger than those of PN solar cell by 48[%], 14[%]. Considering that the efficiency of BSF cell is 2.5[%] as well as PN solar cell's is 7.5[%], 10.0[%] of efficiency improvement effect can be obtained from BSF solar cell. Futhermore, in consequence of front-side impurity concentration change from 10$\^$17/[atoms/cm$\^$-3] to 10$\^$20/[atoms/cm$\^$-3/] alternately, the most ideal result can be expected when it is 10$\^$18/[atoms/cm$\^$-3/].

섬광에 의하여 사람 눈에 입사되는 광 에너지 (Irradiant Energy into an Eye from a Flash Light)

  • 박승만;한승오
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1225-1230
    • /
    • 2016
  • Since a flash light produces enormous amount of photon energy in short time, not only electro-optic and infrared(EO/IR) systems utilized for Intelligence Surveillance Target Acquisition and reconnaissance(ISTAR) activities but also the people of a combat field can be severely influenced by a high flash light bursting in front of them. The people who bumped into a flash could not escape such enormous amount of photon energy, resulting in being blind temporarily or even permanently. In order to investigate the effect of a high flash source on a human eye, it is essential to know how much photon energy be incident into an eye from the flash source. In this paper, the model of irradiated photon energy to individuals from some flashes is proposed. The proposed irradiated photon energy per unit area of retina is based on taking the situation to be modeled as a simple EO system in front of a flash light. The validity of proposed model was proved by the application of the model to human on the surface of the earth with the well known light source, the Sun. The model of this study can be utilized to simulate the retinal intensity and energy of a flash for various conditions such as the illumination levels, the distance from a flash busting site, luminous intensity and time of a flash.

Influence of ventilation rate on the aerodynamic interference between two extra-large indirect dry cooling towers by CFD

  • Ke, S.T.;Liang, J.;Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.449-468
    • /
    • 2015
  • Current wind-resistance designs of large-scale indirect dry cooling towers (IDCTs) exclude an important factor: the influence of the ventilation rate for radiator shutter on wind loads on the outer surfaces of the tower shell. More seemingly overlooked aspects are the effects of various ventilation rates on the wind pressure distribution on the tower surfaces of two IDCTs, and the feature of the flow field around them. In order to investigate the effects of the radiator shutter ventilation rates on the aerodynamic interference between IDCTs, this paper established the numerical wind tunnel model based on the Computational Fluid Dynamic (CFD) technology, and analyzed the influences of various radiator shutter ventilation rates on the aerodynamic loads acting upon a single and two extra-large IDCTs during building, installation, and operation stages. Through the comparison with the results of physical wind tunnel test and different design codes, the results indicated that: the influence of the ventilation rate on the flow field and shape coefficients on the outer surface of a single IDCT is weak, and the curve of mean shape coefficients is close to the reference curve provided by the current design code. In a two-tower combination, the ventilation rate significantly affects the downwind surface of the front tower and the upwind surface of the back tower, and the larger positive pressure shifts down along the upwind surface of the back tower as the ventilation rate increases. The ventilation rate significantly influences the drag force coefficient of the back tower in a two-tower combination, the drag force coefficient increases with the ventilation rate and reaches the maximum in a building status of full ventilation, and the maximum drag coefficient is 11% greater than that with complete closure.

투과성 해안구조물 내-외부 파동장의 수리특성에 관한 순치모의 (Numerical Simulation of Internal-External Wave Field Interaction in Permeable Coastal Structures)

  • 차종호;윤한삼;류청로;강윤구
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.18-23
    • /
    • 2008
  • This study investigated interactions between the internal-external wave field of a permeable coastal structure consisting of rubble. The study examined the application criteria of an existing numerical model (CADMAS-SURF V.4.0) and proposed a modified method to provide reasonable results. In particular, the study focused on and emphasized the water surface profiles in front of a structure, wave run-up/run-down on a slope, and internal water level fluctuations due to the drag coefficient and porosity of a rubble mound structure. In conclusion, the result show that when the vertical fluctuations of the internal water levels in permeable coastal structures exhibited high-quality representation. Sane responses can be seen for wave run-up/run-down characteristics on its slopes.

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.