• Title/Summary/Keyword: frictional loss

Search Result 104, Processing Time 0.023 seconds

Tapered production tubing design considering flow stability and production rate (유동안정성과 생산량을 고려한 2단 생산튜빙 디자인)

  • Kim, Sung-Il;Jo, Gyung-Nam;Choe, Jonggeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.548-556
    • /
    • 2013
  • A tapered production tubing with two different inner diameters has been suggested to increase production rates. In this research, various tapered tubing combinations are taken into account and possible tubing combinations are proposed to satisfy each objective. In previous studies, production enhancement was the main goal. However, this research also considers flow stability by analyzing tubing pressure traverse, liquid holdup, and operating conditions. For a reservoir assumed in this research, a tapered tubing of, 4.5 inch inner diameter(ID) and 2000 ft in length in the lower part and 5.5 inch ID and 8000 ft in the upper part, shows the highest net present value. Compared to a mono tubing, tapered tubings enable various tubing designs because they have smaller differences in frictional pressure loss. It is important to maintain low liquid holdup to prevent liquid loading. Smaller ID of tapered tubing in the lower part enables to achieve the object. In conclusion, it is identified that various tubing designs are achievable from the analyses of overall production operations depending on purposes specified.

Tribological characteristics of short fiber reinforced composites (단섬유 보강 복합재료의 트라이볼로지 특성)

  • 윤재륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1238-1245
    • /
    • 1988
  • Friction and wear characteristics of short fiber reinforced and particulate filled composites were investigated experimentally. Two kinds of fiber composites, chopped graphite fiber reinforced PAI(polyamide-imide) and glass fiber reinforced PAI, and a particulate composite, TiO$_{2}$ powder filled PAI, were selected for the friction and wear test since these are important engineering materials based on a new high temperature engineering plastic. All the specimens were cut into proper size for cylinder-on-plate type wear test. Frictional forces were measured by employing a load transducer and wear rates were calculated by measuring weight loss during wear test. The experimental results are reported in this paper and carefully discussed to explain the friction and wear behavior qualitatively. The frictional behavior is interpreted by considering four basic friction components which are believed to the genesis of friction and the wear behavior is explained by applying delamination theory of wear.

Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston (피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

A Study on the Wear Characteristics and the Mechanism of KP-4M Steel for Plastic Molding (플라스틱성형용 KP-4M강의 마멸특성 및 이의 기구에 관한 연구)

  • 박흥식;전태옥;김동호
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1996
  • This study was undertaken to investigate the dry wear characteristics and mechanism of KP-4M steel for plastic molding against SKD 61 hardened by heat treatment. The wear test was carried out under different conditions such as sliding speed, contact pressure, sliding distance, with frictional tester of pin on disc type. The wear loss on variation of sliding speed was little in lower speed range below 0.5 m/sec and in higher speed range above 1.5 m/sec,'but wear loss was high in intermediate speed range. The critical sliding speed, which showed the maximum value of specific wear rate, became lower with increased contact pressure. Increasing the contact pressure, the critical sliding distance Lcr which the wear mechanism changes from severe wear to mild wear was increased due to the decrease of oxidation reaction velocity. Through this study we suggested a model of generation and elimination process of wear debris of KP-4M steel for plastic molding.

Loss of strength in asbestos-cement water pipes due to leaching

  • Gil, Lluis;Perez, Marco A.;Bernat, Ernest;Cruz, Juan J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.655-663
    • /
    • 2011
  • Asbestos-cement is a material with valuable strength and durability. It was extensively used for water distribution pipes across the world from the 1950s until the early 1980s. The network of pipes in this case study dates from the 1970s, and after more than 30 to 40 years of service, some pipes have been found to break under common service pressure with no apparent reason. A set of mechanical tests was performed including bending, compression, pressure and crushing tests. Microscopy analysis was also used to understand the material behaviour. Tests showed that there was a clear loss of strength in the pipes and that the safety factor was under the established threshold in most of the specimens. Microscopy results showed morphological damage to the pipes. The loss of strength was attributed to a leaching effect. Leaching damages the cement matrix and reduces the frictional interfacial shear stress.

A Study on the pressure loss of sloid-liquid 2 phase flow in an annulus (환형관내 고-액 2상 유동의 압력손실 변화특성에 대한 연구)

  • Woo, Nam-Sub;Han, Sang-Mok;Hwang, Young-Kyu;Yoon, Chi-Ho;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2720-2724
    • /
    • 2007
  • Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. An experimental study was carried out to study solid-liquid two phase flow in a slim hole annulus. Annular velocities of carrier fluids varied from 0.2 m/s to 1.5 m/s. The carrier fluids which were utilized included tap water and CMC water solutions. Pressure drops and average flow rates were measured for the parameters such as inner-pipe rotary speed, carrier fluid velocity, hole inclination and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

  • PDF

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

Numerical study on attenuation and distortion of compression wave propagation into a straight tube (직관내를 전파하는 압축파의 감쇠와 변형에 관한 수치해석적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2315-2325
    • /
    • 1996
  • A compression wave is attenuated or distorted as it propagates in a tube. The present study investigated the propagation characteristics of the compression waves which are generated by a train in a high-speed railway tunnel. A Total Variation Diminishing (TVD) difference scheme was applied to one-dimensional, unsteady viscous compressible flow. The numerical calculation involved the effects of wall friction, heat transfer and energy loss due to the friction heat in the boundary layer behind the propagating compression wave, and compared with the measurement results of a shock tube and a real tunnel. The present results show that attenuation of the compression wave in turbulent boundary layer is stronger than in laminar boundary layer, but nonlinear effect of the compression wave is greater in the laminar boundary layer. The energy loss due to the frictional heat had not influence on attenuation and distortion of the propagating compression waves.

Moisture-Related Properties of PET Fabrics treated with Quaternary Ammonium Compound/Alkaline Solution (사급(四級) 암모늄 화합물(化合物)과 알칼리 혼합액(混合液)으로 처리(處理)된 PET직물(織物)의 수분특성(水分特性) 연구(硏究))

  • Kim, Do-Hee;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.7 no.2
    • /
    • pp.69-81
    • /
    • 2003
  • Among the various properties of textile fabrics, the moisture-related properties are important for the textile processes or the apparel comfort characteristics. Alkaline hydrolysis results in pitting on the surface of fibers and increases the amount of hydroxyl and carboxyl end groups of the PET molecules on the fiber surface. The purpose of this study is to investigate the moisture-related properties of PET fabrics treated with quaternary ammonium compound/alkaline solution. The wetting and wicking properties of the PET fabrics were measured using the following experiments: contact angle, surface free energy, work of adhesion, vertical wicking height, moisture regain, and frictional static voltage. It was concluded that by the alkaline hydrolysis process, surface hydrophilicity and reactivity were considerably improved especially at lower levels of weight loss% and that the pitting of the fiber surface resulted in at higher levels of weight loss% was disadvantageous in moisture-related properties of PET.