• Title/Summary/Keyword: frictional effect

Search Result 407, Processing Time 0.032 seconds

Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings (갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향)

  • Lee, Jung-Min;Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Dong-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.

Frictional Behavior of SAM Coated Silicon (SAM 코팅층의 미소마찰거동에 관한 연구)

  • 차금환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.19-23
    • /
    • 2000
  • Stiction is an undesirable phenomenon that can be encountered often in Micro-Electro Mechanical Systems (MEMS) applications, In order to minimize this effect, Self-Assembled Monolayers (SAM) are commonly used. In this work the frictional characteristics of SAM are investigated using both micro-tribotester and SPM. It was found that the performance of SAM is quite sensitive to coating condition. The experimental results show promise for SAM to be used in sliding applications of micro systems.

  • PDF

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

Texture of Frictionally Rolled AA 3003 Aluminum alloy (마찰 압연한 AA 3003 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.330-331
    • /
    • 2007
  • The effect of frictional rolling and subsequent heat treatment was studied on the evolution of texture of AA 3003 Aluminum alloy. With frictional rolling without lubrication it is possible to obtain a larger friction between roll and sample which lead to the formation of uniform rolling texture in the whole thickness layers.

  • PDF

Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile (탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석)

  • 조준행;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF

Multidimensional Frictional Coupling Effect in the Photoisomerization of trans-Stilbene

  • Gwak, Gi Jeong;Lee, Sang Yeop;Sin, Guk Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.427-432
    • /
    • 1995
  • A model based on two coupled generalized Langevin equations is proposed to investigate the trans-stilbene photoisomerization dynamics. In this model, a system which has two independent coordinates is considered and these two system coordinates are coupled to the same harmonic bath. The direct coupling between the system coordinates is assumed negligible and these two coordinates influence each other through the frictional coupling mediated by solvent molecules. From the Hamiltonian which is equivalent to the coupled generalized Langevin equations, we obtain the transition state theory rate constants of the stilbene photoisomerization. The rates obtained from this model are compared to experimental results in n-alkane solvents.

Numerical investigation of a novel device for bubble generation to reduce ship drag

  • Zhang, Jun;Yang, Shuo;Liu, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.629-643
    • /
    • 2018
  • For a sailing ship, the frictional resistance exerted on the hull of ship is due to viscous effect of the fluid flow, which is proportional to the wetted area of the hull and moving speed of ship. This resistance can be reduced through air bubble lubrication to the hull. The traditional way of introducing air to the wetted hull consumes extra energy to retain stability of air layer or bubbles. It leads to lower reduction rate of the net frictional resistance. In the present paper, a novel air bubble lubrication technique proposed by Kumagai et al. (2014), the Winged Air Induction Pipe (WAIP) device with opening hole on the upper surface of the hydrofoil is numerically investigated. This device is able to naturally introduce air to be sandwiched between the wetted hull and water. Propulsion system efficiency can be therefore increased by employing the WAIP device to reduce frictional drag. In order to maximize the device performance and explore the underlying physics, parametric study is carried out numerically. Effects of submerged depth of the hydrofoil and properties of the opening holes on the upper surface of the hydrofoil are investigated. The results show that more holes are favourable to reduce frictional drag. 62.85% can be achieved by applying 4 number of holes.

Wear Behaviors of ${Si_3}{N_4}$ under Various Sliding Conditions (미끄럼 환경의 변화에 따른 ${Si_3}{N_4}$의 마멸거동)

  • Lee, Yeong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1753-1761
    • /
    • 1996
  • The wear behaviors of ${Si_3}{N_4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used. Using the servo-metor, the sliding speed did ot alternate due to the frictional forces. Threekinds of loads and speeds were selected to watch the variation of the wear rates and the frictional forces. Also three kinds of sliding condition under a constant speed were used to see the effects of the oxidationand the abrasion. The contact pressure was more effective than the repeated cycle on the wear behavior of ${Si_3}{N_4}$. With the low loads, the effect of the asperity-failure was more dominant than that of oxidation and abrasion. As increasing the load, the effects of oxidation and abrasion were increased, but the asperity-failure effects were decreased. The wear particles destroyed the ozide layers formed on sliding surfaces. The wear rate could be decreased due to delaying the oxidation. The frictional power and the wear weight per time were usefuel to see the transition of wear.