• Title/Summary/Keyword: friction uncertainty

Search Result 81, Processing Time 0.029 seconds

Design of Adaptive Discrete Time Sliding-Mode Tracking Controller for a Hydraulic Proportional Control System Considering Nonlinear Friction (비선형 마찰을 고려한 유압비례제어 시스템의 적응 이산시간 슬라이딩모드 추적 제어기 설계)

  • Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.175-180
    • /
    • 2005
  • Incorrections between model and plant are parameter, system order uncertainties and modeling error due to disturbance like friction. Therefore to achieve a good tracking performance, adaptive discrete time sliding mode tracking controller is used under time-varying desired position. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law. Robustness is increased by using both a recursive least-square method and a sliding function-based nonlinear feedback. The effectiveness of the proposed control algorithm is proved by the results of simulation and experiment.

  • PDF

A Study on Comparison Test of Disk Brake Lining for Rolling Stock (KRRI -CARS) (철도차량용 디스크 브레이크 라이닝의비교시험 연구)

  • Houg Yong-Ki;Kwon Sung-Tae;Chung Jong-Duk;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.483-488
    • /
    • 2004
  • The inter-laboratory comparison test which is demanded on the authorized test of ISO/IEC 17025 is the program to guarantee the confidence of test result. This paper, as a part of the inter-laboratory comparison test between South Korea and China, is refered to the characteristic of friction coefficient of disk brake lining for rolling stock according to disk type. Brake tests were carried out under constant brake force and operating sequence by using dynamo-tester according to disk and disk lining types. To establishing the confidence of test result, we calculated A type uncertainty about friction coefficient and investigated the factors about the variation of friction coefficient.

  • PDF

The Research of Velocity Estimation Method in Pipe Pumping for Slurry Transportation (슬러리 이송을 위한 관내 유속 추정 방법 연구)

  • Kwon, Seunghee;Jeong, Soonyong;Kim, Yuseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.21-32
    • /
    • 2014
  • This Research have suggested the new estimation method using parameter estimation algorithm to substitute established velocity and friction factor calculation equation. Established calculation equation has some difficulties for estimation and reflecting exactly flow specification cause parameter uncertainty and material uncertainty governed real phenomenon, so this research has used system modeling method for flow specification estimation and suggested estimation method.

Robust Nonlinear Multivariable Control for the Hard Nonlinear System with Structured Uncertainty (구조화된 불확실성을 갖는 하드 비선형 시스템에 대한 강인한 다변수 비선형 제어)

  • 한성익;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.128-141
    • /
    • 1998
  • We propose the robust nonlinear controller design methodology for the multivariable system which has hard nonlinearities (Coulomb friction, dead-zone, etc) and the structured real parameter uncertainty. The hard nonlinearity can be linearized by the RIDF technique and structured real parameter uncertainty can be modelled as the sense of Peterson-Hollot's quadratic Lyapunov bound. For this system, we apply the robust QLQG/H$_{\infty}$ control and then can obtain four Riccati equations. Because of the system's nonlinearity, however, one Riccati equation contains the nonlinear correction term that is very difficult to solve numerically, In order to treat this problem, using some transformations to Riccati equations, the nonlinear correction term can be eliminated. Then, only two Riccati equations need to design a controller. Finally, the robust nonlinear controller is synthesized via IRIDF techniques. To test this proposed control method, we consider the direct-drive robot manipulator system that has Coulomb frictions and varying inertia.

  • PDF

A Study on the Effects of Cross-sectional Dimension Change of Brake Pad Specimen on the Uncertainty of the Compressive Strength (제동 패드의 압축강도시편의 단면치수변화가 압축강도 불확도에 미치는 영향 분석)

  • Park, Soo Hong;Park, Jin Kyu;Kim, Si Wan;Park, Chan Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.223-227
    • /
    • 2014
  • The brake pad is one of the basic brake elements of a railway vehicle. It accomplishes braking action by friction between a pad and a brake disc. Because the brake pad must endure specified high pressure, the compressive strength is managed as the main performance factor. The standards for measuring the compressive strength of brake pads are KRS, KRCS, and KRT. These standards specify the size of the test piece for measuring compressive strength as $20mm{\times}10mm{\times}15mm$ ($W{\times}D{\times}H$). To reduce the uncertainty of the compressive strength, factors of uncertainty were analyzed. The results show that changing the dimensions of the cross section was useful to reduce the uncertainty. The uncertainty due to the new cross-sectional dimension shows the effectiveness of reducing uncertainty.

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

Constitutional Classification between Tae-eumin and Soyangin Types by Measurement of the Friction Coefficient on the Skin of the Human Hand (손등 피부 마찰계수를 이용한 태음인과 소양인 간의 체질구별)

  • Song, Han-Wook;Park, Yon-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.52-61
    • /
    • 2010
  • The use of the friction coefficient is known to provide good discrimination ability in the classification of human constitutions, which are used in alternative medicine. In this study, a system that uses a multi-axis load cell and a hemi-circular probe is designed. The equipment consists of a sensor (load cell type, manufactured by the authors), an x-axis linear-bush guide motorized mobile stage that supports the hand being analyzed, and a signal conditioner. Using the proposed system, the friction coefficients from different constitutions were compared, and the relative repeatability error for the friction coefficient measurement was determined to be less than 2 %. The direction along the ring finger line was determined to be the optimum measurement region for a constitutional diagnosis between Tae-eumin and Soyangin types using the proposed system. There were some differences in the friction coefficient between the two constitutions, as reported in ancient literature. The proposed system is applicable to a quantitative constitutional diagnosis between Tae-eumin and Soyangin types within an acceptable level of uncertainty.

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.

Sliding Mode Control based on Disturbance Observer for Magnetic Levitation Positioning Stage

  • Zhang, Shansi;Ma, Shuyuan;Wang, Weiming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2116-2124
    • /
    • 2018
  • Magnetic levitation system with the advantages of non-contact, no friction and no wear can satisfy the requirement of high precision and high speed positioning. In this paper, magnetic levitation positioning stage which mainly consists of planar coil and HALBACH permanent magnet array and its control and driving system are designed. Magnetic levitation system is a highly nonlinear and strongly coupled complex system and its control performance can be influenced by the uncertainty and external disturbance. So exact feedback linearization method is used to realize exact linearization and decoupling, and a strategy of sliding mode control based on disturbance observer is proposed to compensate the uncertainty and external disturbance. Detailed proofs of observer's convergence property and system stability are derived. Both the simulation and experiment results verify the effectiveness of sliding mode control algorithm based on disturbance observer.

Robust Hybrid Control for Uncertain Robot Manipulators (불확실 로봇 시스템의 견실 하이브리드 제어기 설계)

  • Han, Myung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.73-81
    • /
    • 1997
  • An new class of robust position/force hybrid control law is proposed for uncertain robot manipulators. The uncertainty is nonlinear and (plssibly fast) time-varying. Therefore, the uncertain factors such as imper- fect modeling, friction, payload change, and external disturbance are all addressed. Based on the possible bound of the uncertainty, the controller is constructed and the stability study based on Lyapunov function is presented. To show that the proposed control laws are indeed applicable, the theoretical result is applied to a SCARA-type robot manipulator and simulation result is presented.

  • PDF