• Title/Summary/Keyword: friction power loss

Search Result 114, Processing Time 0.047 seconds

A realization of simulator for reliability verification on large steam turbine controller (대용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Jeong, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2138-2140
    • /
    • 2001
  • A siumlator had been developed and will be used for reliability verification on large steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valves and steam regulation valves. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

Prediction of Vehicle Fuel Consumption on a Component Basis (가솔린 차량의 각 요소별 연료소모량 예측)

  • 송해박;유정철;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

Optimization of the Durability Performance of a 17cc Automotive Compressor (17cc급 자동차용 압축기 내구성능 최적화에 관한 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.68-75
    • /
    • 2021
  • The fuel economy is a key issue for the automotive industry due to environmental concerns. In particular, only 5-20% of the energy generated in a car using an internal combustion engine is used as power, and the remaining energy is dissipated due to friction with other parts. The main components in the reciprocating piston type compressors commonly used in general vehicles include shafts, swash plates, pistons, and cylinders, and severe friction loss occurs due to the contact of these components. Generally, the wear contact is the maximum between the shaft and cylinder and between the piston and swash plate. The friction of these parts may cause quality problems and deteriorate the durability. In this study, to reduce the frictional loss, a prototype with additional coating agents was produced. Moreover, an optimized design was generated, and performance, noise, and durability tests were conducted. A more durable product was successfully obtained.

A Study on Efficiency of Tapered Roller Bearing for an Automatic Transmission (승용차 자동변속기용 테이퍼 롤러 베어링의 효율개선 연구)

  • Lee, In-Wook;Han, Sung Gil;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-36
    • /
    • 2018
  • Automotive fuel efficiency regulations and air pollution control are hot issues of recent years in the automotive industry. To solve these regulation problems, many studies are continuing to improve the transmission efficiency of transmissions. Tapered roller bearings are useful to improve the transmission efficiency in the recent automobile parts. The frictional losses in the tapered roller bearings are mainly composed of the rolling friction and the sliding friction, and are dependent upon the load, the lubrication, the rotation speed of bearings, and etc. In this paper, the operating conditions of the transmission are defined and then the power losses of each bearing are calculated. In addition, improvement options are suggested after identifying the design factors influenced much by the improvement effect of power loss under the operating conditions of each bearing. We compare the power losses of the entire transmission system due to bearing improvements by comparing the friction losses between the original design and the improved design. Lastly, it is shown that the calculated power losses are valid by comparing the test values and the theoretical values for the frictional torque characteristics of the original and improved bearings.

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

The study on the friction characteristics of spherical hydrostatic bearing for hydraulic piston motor (유압모터 구면 정압베어링의 마찰특성에 관한 연구)

  • 함영복;최영호;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.647-650
    • /
    • 2001
  • In case of bent axis type axial piston hydraulic pump or motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following pairs ; piston shoe and swash plate, valve plate and cylinder block, piston and cylinder block, etc. In this research, we designed two pairs of spherical ball joint in witch connecting rod piston end. The one is not hydrostatic bearing, the other is designed with spherical hydrostatic bearing in point of view minimum pumping power loss. By varying supply pressure on the piston, we can know that it is possible to reduce the friction torque by using hydrostatic bearing designed one. Finally, by comparing the results of driving torque between the two models, it was verified that the spherical hydrostatic bearing is well designed.

  • PDF

Numerical Study of Behaviour Characteristics of Mechanical Seals with Inclined Friction Faces (경사진 마찰접촉면을 갖는 기계경사면시일의 거동특성에 관한 수치적 연구)

  • Kim Chung Kyun
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2004
  • Thermal distortion of non-contacting mechanical seals with inclined rubbing surfaces is affected by friction heat between seal ring and seal seat. The circulation fluid along the inclined rubbing surfaces maintains cooling friction heat and lubrication between the sealing surfaces of mechanical seal with an inclined surface. Mechanical seals with inclined sealing surfaces may be useful for reducing the frictional heating and power loss because of the introduction of cooling fluids to the sealing gap between seal ring and seal seat. From the FEM computed result shows that the thermal behavior and von Mises stress of sealing faces with an inclined angle 60 are much reduced in comparison of the conventional mechanical face seal with rectangular sealing surfaces.

Automotive Engine Oil and Vehicle Fuel Economy (자동차 엔진오일과 연비)

  • 이영재;김강출;표영덕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.155-161
    • /
    • 2000
  • To improve the vehicle fuel economy, various technologies such as improvement of power train efficiency, use of light weight material, improvement of aerodynamic design, have been studied. One of the possible way to improve the vehicle fuel economy is to reduce the engine friction loss by improving the engine oil characteristics. In the present paper, it was examined the effect of the engine oil viscosity and the addition of friction modifier to engine oil on vehicle fuel economy improvements. Moreover, the effect of engine oil degradation on vehicle fuel economy was examined with two gasoline vehicles and one diesel vehicle by using the fuel economy test facility.

  • PDF

Friction Characteristic of SCM44 Steel using Grease Lubricants (그리스 윤활유의 종류에 따른 SCM44의 마찰특성)

  • Kwon, Soon-Goo;Kwon, Soon-Hong;Kim, Won-Kyung;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.917-926
    • /
    • 2020
  • Friction mechanisms is a very important role in the industrial machinery. However, many experiments have been conducted to reduce the loss of energy resources and parts used due to friction because the friction force adversely affects parts, efficiency, noise, and the like of the power unit. Therefore, in this study, the friction coefficient according to the characteristics of the lubricant was measured to find out which Grease Lubricant maintains the low friction coefficient without being most affected by external conditions. A total of five grease lubricants were tested in this study: GHP CAL 301, GHP EP 2, GHP KG 10, GHP HPG 2, and GHP HTG 2. And the friction coefficient was conducted by changing the load conditions (2, 4, 6, 8, 10N) and rotational speed (24, 48, 67, 86, 105, 124, 143, 162vrpm) using a pin-on-disk wear test system. Also, duty number were calculated. As a result, it was confirmed that in all grease lubricants, the speed did not significantly affect the friction coefficient, and it was confirmed that in all lubricants, the size of the friction coefficient decreased as the load increased from a small load to a large load. In addition, it was determined from the experimental results that GHP EP 2 is the most suitable as a grease lubricant and GHP CAL 301 is not the most suitable.