• Title/Summary/Keyword: friction losses

Search Result 112, Processing Time 0.024 seconds

INFLUENCE OF GEAR OIL FORMULATION ON OIL TEMPERATURE

  • Wienecke, D.;Bartz, W.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.311-312
    • /
    • 2002
  • Friction losses in complex tribo-technical system are revealed primarily through their effect on the operating temperature level. In order to assess the influence of the oil formulation on the temperature level comprehensive tests were run in a model test apparatus consisting of a special adapter for the 4-ball test rig. More than ten with different formulations (different base oils, additive packages and viscosity modifiers) were tested, The resulting temperature levels varied by nearly 25 %. The objective of this model testing is to assess the influence of the oil formulation on the operating temperature of vehicle manual transmission. The correlation to the real tribotechnical system was confirmed by a VW Polo transmission test.

  • PDF

Pressure Losses in PVC Pipe and Fittings (PVC 배관부품의 마찰 손실)

  • Cho, Sung-Hwan;Choi, Jin-Hee
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.209-214
    • /
    • 1984
  • Friction factors and equivalent sand roughness of PVC pipe fittings have been studied by experiments in the Reynolds number range of $2,000\~70,000$. PVC pipe fittings studied are straight pipes, $90^{\circ}$ elbows and tees with 15, 25, and 40mm in norminal diameter, all manufactured in Korea with KS mark approval. Equivalent relative roughness of PVC pipes obtained lies between smooth pipe and 0.002. The study shows that equivalent sand roughness of PVC pipes increasses in proportion of the square root of pipe diameter , and can be approximately abtained by multiplying 4 to the root mean square value measured by metal surface roughness tester. Loss coefficient of PVC $90^{\circ}$ elbows decreases slowly with increasing Reynolds number. Loss coeffiicent of tees is a function of ratio of flow rates and Reynolds number.

  • PDF

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Simplified Design of Commercial Pipes with Considering Secondary Losses (부차 손실을 고려한 상용관로의 간편 설계)

  • Yu, Dong-Hun;Jeong, Won-Guk
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.31-43
    • /
    • 2001
  • The friction factor of commercial pipe varies with wide range depending on pipe type and pipe size. Various methods can describe the wide variation of friction factor with good accuracy, but they normally require an iteration process even for solution of a simple case. Power law can result in an explicit form of solver so that the power law is rigorously employed for the development of direct solution technique. The parameters used in the present form of power law are allowed to haute some variation with pipe size and Reynolds number as well as pipe type for wider coverage with good accuracy, while Hazen-Williams equation permits limited variation which accounts only for the roughness or the pipe type. Furthermore secondary loss is considered in the development of explicit equations for design of commercial pipes.

  • PDF

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

Sound Attenuation Coefficients and Biogenic Gas Content in the Offshore Surficial Sediments Around the Korean Peninsula (韓半島 周邊海域 海底 表層蓄積物 音波 空曠係數와 생物起源 氣滯含量)

  • 김한준;덕봉철
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.26-35
    • /
    • 1990
  • Sound velocities and attenuation coefficients of marine surface sediments were calculated from insitu acoustic experiments on 4 nearshore areas off Pohang, Pusan Yeosu, and Kunsan around the Korean Peninsula. The relationship between these values and physical properties of sediments was examined and attenuation mechanism was analysed using the estimated gas content. Sound velocities and attenuation coefficients ranging from 1470 to 1616 m/sec and 0.0565 to 0.6604 dB/kHz-m, respectively, are well related to sediment types. The attenuation coefficient is maximum in coarse silts, and the sound velocity increases with density. The gas content estimated less than 8 ppm increases with the decreasing sediment grain size. When the sediment size is greater than fine sand, sound attenuation is mostly due to friction losses, and probably negligible viscous loss remains unchanged with the varying physical properties of sediments. The maximum attenuation in coarse silts result from both friction loss and cohesion of finer sediments between the contacts of silt grains. The cohesion begins to be the dominant dissipative process with decreasing grain size from medium and fine silts.

  • PDF

Pump Performance Analyses with High Viscous Fluids (점성이 높은 유체를 사용하는 펌프의 성능해석)

  • Kim, Dong-Joo;Roh, Hyung-Woon;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.21-26
    • /
    • 2004
  • In this study the effects of fluid viscosity on the pump performances for a conventional centrifugal pump were experimentally investigated. The study aimed to compare the pump characteristics between water and viscosity fluids. In order to measure the flow rate and pressure, v-notch welt and bourdon pressure gauges were used for the codes of KS B6301 and KS B6302. The working fluids were water, aqueous sugar and glycerin solutions. The results were summarized as follows : The experimental results were summarized as follows : the pump characteristics of the total head, shaft power, and efficiency with high viscosity fluids were different from those of water. When the viscosity of the applied fluid was increased, the total head and efficiency were more decreased than those of water. The decreasing gradients of the total head and the efficiency were larger than water due to the increased disk friction losses at the duty operation point. However, the shut-off head was almost constant regardless the viscosity of applied fluids. Each efficiency curves for the sugar $20w\%$ and glycerin $20w\%$ solutions was decreased up to $15.1\%$ and $34.4\%$ than that of water, respectively.

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

THE PERFORMANCE IMPROVEMENT OF VACUUM CLEANER BY ANALYSIS OF THE FLOW AROUND CENTRIFUGAL FAN (진공청소기용 원심팬 주위의 유동해석을 통한 성능개선)

  • Park, J.W.;Ki, M.C.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.82-87
    • /
    • 2007
  • A cleaner has trouble with too much noise and power consumption. To solve these problems, the investigation for motors, which are the main component of vacuum cleaner, is required. However, it is difficult to analyze the flow by the experimental means because of the high speed of the fan rotation ranging from 30,000 rpm to 50,000 rpm. Moreover it takes much time to perform the numerical simulation for the flow. In this research, it is aimed to analyse the flow through the centrifugal fan which is believed to be a main noise source, by the computational method. The efficiency of the centrifugal fan is affected by friction loss, shock loss and so on. Those losses depend on factors like the velocity of impeller, blade shape and etc. Accordingly, the influence of the shape of impeller on the flow is investigated in this study. The computational analysis was done by changing impeller shapes. The flow around the centrifugal fan is simulated by applying the moving mesh. To verify the validity of the computation results, the air flow rate and the pressure field to the cleaner is compared with the experimental data. All simulations are performed by using commercial code SC/Tetra. The calculated results show good agreement with the experimental ones qualitatively and it is believed to be promising to use computational simulation in the improvement of the vacuum cleaner performance.

  • PDF

A Second-Order Adiabatic Analysis Method of Stirling Engines Based on the Approximate Analytical Solution (해석적 근사해에 근거한 스터링기관의 2차단열해석법)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.787-794
    • /
    • 1992
  • To predict performances of Stirling Engines, a second-order analysis method has been developed. The present method which is based on the approximate analytical solution to the Ideal Adiabatic Model includes major loss mechanisms due to finite heat transfer and flow friction. Comparison of calculated results with previously reported study for a specific engine shows reasonable agreements and a possibility of being used for basic designs. Also, predicted performances with repect to engine speeds are consistent with experimental data in trend. To improve the prediction capability of this method, it is needed that not only additional losses should be taken into account, but also fundamental characteristics of oscillating flow and heat transfer should be better understood.