• 제목/요약/키워드: friction losses

검색결과 111건 처리시간 0.025초

Effect of Bundle Junction Face and Misalignment on the Pressure Drops Across a Randomly Loaded and Aligned 12 Bundles in Candu Fuel Channel

  • H. C. Suk;K. S. Sim;C. H. Chung;Lee, Y. O.
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.280-289
    • /
    • 1996
  • The pressure drop of twelve fuel bundle string in the CANDU-6 fuel channel is equal to the sum of the eleven junction pressure losses, the bundle string entrance and exit pressure losses, the skin friction pressure loss, and other appendage pressure losses, where the junction loss is dependent on the bundle end faces and angular alignments of the junctions. The results of the single junction pressure drop tests in a short rig show that the most probable pressure drop of the eleven junctions was analytically equal to the eleven times of average pressure drop of all the possible single junction pressure drops, and also that the largest and smallest junction pressure drops across the eleven junctions probably occurred only with BA and BB type junctions, respectively, where A and B denote the bundle end sides with an end-plates on which a company monogram is stamped and unstamped, respectively.

  • PDF

뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구 (A Study on the Helical Flow of Newtonian and non-Newtonian fluid)

  • 김영주;김철수;황영규
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2005
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and $0.2\%$ aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of $0\~500$ rpm. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. This study shows the change of skin friction coefficient and wall shear stress corresponding to the variation of rotating speed of the inner cylinder, radius ratio, eccentricity, and working fluids.

굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구 (A Study on the Flow of Drilling Fluids in Slim hole Annuli)

  • 서병택;우남섭;황영규
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.

도정수율(搗精收率)과 성능향상(性能向上)을 위(爲)한 연구(硏究)(V) -분풍(噴風) 연삭식(硏削式) 정미기(精米機)의 정백성능(精白性能)에 관(關)한 실험적(實驗的) 연구(硏究)- (Study on the Improvement of Milling Recovery and Performance (V) -Experimental Study on Rice Whitening Performance of Jet-air Abrasive-Type Whitener -)

  • 이성범;정창주;노상하
    • Journal of Biosystems Engineering
    • /
    • 제8권1호
    • /
    • pp.17-29
    • /
    • 1983
  • The milling process is considered as causing one of the greatest grain losses among all the processes in rice post-production. Major source of grain losses in the rice milling is considered as the whitening process. This study was attempted to develop an abrasive-type whitener, the whitening chamber of which being supplied by jet-air evenly and continuously. To investigate the milling performance by the new whitener, three kind of emery-stone grit(#36, #41, and #46), and three levels of rotational speed of emery stone roller (950, 1070, and 1200 rpm) were tested. The jet-air abrasive-type whitener was also compared with the conventional abrasive-type having no jet-air blower in terms of their milling performance. In addition, the effect of different combinations of sequential uses of the abrasive- and friction-type whiteners on the milling performance was also experimentally evaluated. The results of this study are summarized as follows; 1. In general, the whitening system combined with the abrasive type whitener with jet-air supply, which was newly designed, and the existing jet-air friction type whiteners produces more milled- and head-rice by about 0.3% points and 2.8% points, respectively than the system combined with the existing abrasive type without the jet-air supply under the same operational conditions. The former also consumed less electricity by 0.024 KwH per 100kg of milled rice production and gave more milling capacity by about 35 kg/hr. As compared with the conventional whitening system consisting of jet-air friction type whiteners only, the former yielded more milled- and head-rice by 1.5% points and 4.4% points, respectively. 2. The abrasive roller having 46 grit emery was better than the roller having 36 grit in aspects of milling performance and machine efficiency, in general. 3. With regard to the effect of combination method of abrasive type and friction type whiteners, one pass in abrasive type plus three passes in friction type gave better milling performance and energy efficiency than the two passes in abrasive type plus two passes in friction type regardless of the designs of the emery stone rollers. 4. The increase in rotational speed of the emery stone roller from 950 rpm to 1200 rpm presented negative effects on milled and head-rice yields and machine efficiency, but slightly positive effect on milling capacity.

  • PDF

Experimental Study on the Vortex Flow in a Concentric Annulus with a Rotating Inner Cylinder

  • Kim, Young-Ju;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.562-570
    • /
    • 2003
  • This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0~600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and. then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Re$\_$c/ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

피스톤 스커트 표면의 트라이볼로지 거동에 미치는 표면형상과 코팅의 영향 (The Effects of Surface Porfiles and Coatings on the Tribological Behaviors of the Surfaces of Piston Skirt)

  • 조대현;정순오;원영덕;한만철;이영제
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.122-128
    • /
    • 2008
  • To reduce the friction losses and the wear amounts in the piston assembly two methods were proposed. One is the modification of surface profile of the skirt part. The surface coating is another method to protect the sliding surfaces. To modify the profile of the skirt surfaces the surfaces were ground to have three different shapes of profiles. Also, several coatings, such as graphite, TiN, and $MoS_2$, and DLC, were used to protect the surfaces of the piston skirts. The specimens of the skirt and the cylinder bores were tested with the reciprocating wear tester. SAE 5W40 engine oil was used in boundary lubrication regime. Among several coatings the graphite and DLC coatings were very effective to reduce the friction forces. Especially, DLC film represented much better tribological performances than the others. The friction coefficient of the graphite coating was the lowest, but the graphite coating was not effective to protect the surfaces.

마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가 (An Assessment of Friction Factor and Viscosity Models for Predicting the Refrigerant Characteristics in Adiabatic Capillary Tubes)

  • 손기동;박상구;정지환;이승홍;김윤수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.140-148
    • /
    • 2009
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses and flashing simultaneously. In this paper flow characteristics of adiabatic capillary tubes were simulated with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models. The predicted pressure distribution and mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing suitable correlations of friction factor, two-phase viscosity and two-phase frictional multiplier.

환형관내 비뉴튼유체의 회전유동에 관한 연구 (Flow of non-Newtonian fluid in a concentric annulus with rotation)

  • 김영주;우남섭;서병택;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF

마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가 (An assessment of friction factor and viscosity models for predicting the refrigerant characteristics in adiabatic capillary tubes)

  • 손기동;박상구;정지환;김윤수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.47-54
    • /
    • 2008
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses, and flashing, simultaneously. In this paper flow characteristics of adiabatic capillary tubes with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models were simulated. The predicted pressure distribution, mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing the suitable correlations of friction factor and two-phase viscosity model, and two-phase frictional multiplier.

  • PDF

유도전동기 드라이브 시스템의 효율성능을 예측하기 위한 손실 모델링 (Loss Modeling in order to Predict the Efficiency Performance of Induction Motor Drive System)

  • 정동화;박기태;이정철
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.56-61
    • /
    • 2000
  • The precise and reliable loss model for induction motor and converter system is very important in order to predict the efficiency performance of variable speed drives. This paper proposes an accurate loss model of induction motor and converter system. The motor losses, such as stator and rotor copper loss, core loss and stray loss, are considered for fundamental and harmonic frequencies. Also considered are the skin effect on rotor resistance, temperature effect on bath stator and rotor resistance, magnetizing inductance saturation, and friction and windage loss. All the above features are incorporated in a synchronous frame dynamic d-q equivalent circuit. The converter system, consisting of a diode rectifier and PWM transistor inverter, is modeled accurately for conduction and switching losses. Validity of the models, in both steady state and transient conditions, is verified by simulations.

  • PDF