• Title/Summary/Keyword: friction film

Search Result 473, Processing Time 0.021 seconds

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

Nanotribological Characteristics of Silicon Surfaces Modified by IBAD (IBAD로 표면개질된 실리콘 표면의 나노 트라이볼로지적 특성)

  • Park, Ji-Hyun;Yang, Seung-Ho;Kong, Ho-Seung;Jhang, Kyung-Young;Yoon, Eui-Sung
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Nano adhesion and friction between a $Si_{3}N_{4}$ AFM(atomic force microscope) tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM and LFM(lateral force microscope) modes in various range of normal loads. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and other Si-wafers of different surface roughness were used. Results showed that nano adhesion and friction decreased with the surface roughness. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the load was low.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryu, Seong-Guk;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

Performance Analysis of Mechanical Face Seal Used for Primary Heat Transport Pump in Heavy Water Reactor (중수로 냉각재 펌프용 미케니컬 페이스 실의 성능 해석)

  • Kim, Jeong-Hun;Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.240-248
    • /
    • 2011
  • Mechanical face seal installed in primary heat transport pump used for heavy water reactor prevents leakage of working fluid using thin working fluid film between primary seal ring and mating ring. If the leakage of working fluid exceeds the allowable volume, serious accident can be happened by the trouble of primary heat transport pump. The thinner fluid film exists between primary seal ring and mating ring, the less working fluid leaks out. On the other hand, if the thickness of fluid film is not enough, the life of mechanical face seal will be reduced by friction and wear. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the performance of mechanical face seals which have same deep straight groove and 11 different net coning values. As results, equilibrium clearance between primary seal ring and mating ring, leakage volume of working fluid, friction torque on sealing surface and stiffness of working fluid film were obtained. With increasing net coning value, equilibrium clearance and leakage volume increase, and friction torque and stiffness of fluid film decrease.

Mixed Lubrication Analysis of Piston Ring Pack in Internal Combustion Engine (내연기관 피스톤 링 팩의 혼합윤활해석)

  • Yun, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.55-68
    • /
    • 1995
  • Approximately 30 to 70 % of the mechanical losses in a reciprocating engine are contributed by the friction at the piston ring-cylinder interface. The friction characteristics of the piston ring during engine operation is known to as mixed lubrication experimentally. The mixed lubrication models based on the Average Reynolds Equation have been used by this time in order to study the tribological performance of the ring. However, the Average Reynolds Equation contains the expected value term(${\bar{h}}_r$) of local film thickness as well as nominal film thickness(h), so that the work of numerically solving ${\bar{h}}_r$ must be included to obtain the pressure in the oil film. The process of solving ${\bar{h}}_T$ causes a greater multiplying in the numerical solution. In this paper the mixed lubrication analysis using the Simplified Average Reynolds Equation in the piston ring is presented. This equation has only h as oil film thickness term. Therefore the tedious numerical procedure required to obtain ${\bar{h}}_T$ is not needed, and also, computation time can be reduced.

  • PDF

A study on the EHL film behavior measurement for the multigrade lubricant (멀티그레이드 윤활유의 탄성유체윤활 유막 측정 연구)

  • Jang Siyoul;Kim Seungjae;Kim Jaehong;Bae Daeyoon;Yoo SungChoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • It is important to decide the minimum film thickness and viscosity variations of a multigrade lubricant in the contact surface under the high pressure conditions. By carrying out acceleration, deceleration, and various sliding-rolling ratio movement between two contact bodies, it is experimented that film formation variations in the contact surface are captured with multigrade lubricants in order to exactly investigate the variations of film formations. Optical interference images are continuously captured with high resolution CCD camera during the captured period of acceleration, deceleration. The friction forces between the contacting bodies are also measured simultaneously with the film formation.

  • PDF

TRIBOLOGICAL PROPERTIES OF DLC FILMS SLIDING AGAINST DIFFERENT STEELS

  • Suzuki, M.;Tanaka, A,
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.173-174
    • /
    • 2002
  • To study the effects of mating materials on the tribological properties of DLC films. we used a ball-on-plate reciprocating friction tester in dry air and mating materials of martensite stainless steel (hardened, annealed SUS440C), austenite stainless steels (SUS304), and bearing steel (hardened, annealed SUJ2). At a light load of 0.6 N, the friction coefficient always exceeded ${\mu}>0.3$. Tribological properties of DLC film were still excellent above 0.6 N, except in sliding against annealed SUJ2. Analysis using micro-laser Raman spectroscopy showed that the difference between annealed SUJ2 and others materials appears mainly due to structural change in film.

  • PDF

Pin-Boss Bearing Lubrication Analysis of a Diesel Engine Piston Receiving High Combustion Pressure (고 연소압을 받는 디젤엔진 피스톤의 핀-보스 베어링 윤활해석)

  • Chun, Sang-Myung;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated the effects on the film pressure distribution due to the change in maximum combustion pressure.

Nanotribological Characteristics of Plasma Treated Hydrophobic Thin Films on Silicon Surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • 윤의성;양승호;공호성;고석근
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM (atomic force microscope) and LFM (lateral force microscope) modes in various .ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface were superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

A Study on Effects of the Changes in Lower Combustion Pressures and Pressure-Viscosity Index on Pin-Boss Bearing Lubrication of a Diesel Engine Piston Receiving High Combustion Pressure (연소실 저압변화와 압력-점도지수가 디젤엔진 고압피스톤의 핀-보스 베어링 윤활에 미치는 영향 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated how the changes in combustion pressure at exhaust and intake stroke and the pressure-viscosity index effect on the film pressure distribution.