• Title/Summary/Keyword: friction film

Search Result 475, Processing Time 0.022 seconds

Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum (질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가)

  • 김태곤;김남균;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material (로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Choi, Sungwoo;Lee, Heeok
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

Humidity Dependence of Tribological Behavior of DLC Films (DLC 필름의 마찰마모 특성의 습도 의존성에 대한 연구)

  • Park, Se-Jun;Lee, Kwang-Ryeol;Lee, Seung-Cheol;Ko, Dae-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.287-293
    • /
    • 2006
  • Diamond-like carbon (DLC) film was deposited using benzene $(C_6H_6)$ by r. f-plasma assisted chemical vapor deposition. The tribological properties of the DLC film were tested by rotating ball-on-disc type tribometer isolated by a chamber. The tribological test was performed in air environment of relative humidity ranging from 0 to 90% in order to observe the tribological behavior of the DLC film with the change of humidity. We used steel ball and DLC coated steel ball to investigate the effect of the counterface material. Using steel ball, the friction coefficient of DLC film increased from 0.025 to 0.2 as the humidity increased from 0% to 90%. In case of DLC coated steel ball which didn't form the Fe-rich debris, the friction coefficient showed much lower dependence of humidity as 0.08 in relative humidity 90%. We confirmed that the high humidity dependence of the friction coefficient using steel ball resulted from the increase of debris size with humidity and the formation of Fe-rich debris by the wear of steel ball. And the friction coefficient was immediately dropped when the relative humidity changed from 90% to 0% during test using steel ball. From this result, we confirmed that the effect of the Fe-rich debris on the friction coefficient was that Fe element in debris formed the highly sensitive graphitic transfer layer to humidity.

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Friction and Wear Behavior of Ultra-Thin TiN Film during Sliding Wear against Alumina and Hardened Steel (마모 상대재 변화에 따른 TiN 극박막의 마찰 및 마모거동)

  • Song, Myeong-Hun;Lee, Jae-Gap;Kim, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Ultra thin TiN films (50∼700nm thickness) were deposited on AISI 304 stainless steel substrates using a reactive DC magnetron sputtering deposition process to investigate their wear and friction properties. Dry sliding wear tests of the films were carried out against hardened steel and alumina counterparts using a pin-on-disk type wear tester at room temperature. Variation of friction coefficient was measured as a function of film thickness, load, sliding speed and roughness of the substrate. Worn surfaces of the film were examined by a scanning electron microscope. Wear resistance of the TiN film increased with the increase of the film thickness. The TiN film showed relatively high wear resistance in spite of its ultra thin thickness when it is mated by the steel counterpart, while it showed poor wear resistance with the alumina counterpart. The good wear resistance with the steel counterpart was explained by the formation of oxide layers on the film surface and sound interface character between the ultra thin film and the substrate.

  • PDF

Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal (코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.

The Effect of the Preformed Oil or Oxide Film on the Lubricated Sliding Surfaces. (윤활마찰시에 윤활피막 혹은 산화막이 초기 마찰특성에 미치는 영향)

  • 강석춘
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.53-60
    • /
    • 1986
  • The methods to prevent or suppress the initial failure of the sliding surfaces by the formation of the protection film during the manufacturing process were studied. Now it has been known that the surface protection film which was formed during the running-in process is mainly $Fe_3O_4$ and its film was formed only at the limited oxygen ability during the lubricated sliding. So it was tried to form the same oxide film before the sliding by heat treatment at 300$\circ$C with the wetted specimen by oil. The results show that a thin oxide film ($Fe_3O_4$) was formed on the surface beneath the solid oil film and the specimen with this film has much better friction properties than those prepared with heat treatment at 500$\circ$C and 700$\circ$C or the original one.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

Tribological Characteristics of ABS-like Resin According to Silicon Oil Viscosity (실리콘 오일 점도에 따른 ABS-like 레진의 트라이볼로지 특성)

  • Park, Seonghyun;Son, Jungyu;Woo, Seongwoong;Ryu, Euijin;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.365-370
    • /
    • 2020
  • Recently, additive manufacturing (AM) technology has been applied to various industries such as automotive, aviation, medical, and electronics. Most prior studies are limited to the mechanical properties of printed materials, and few studies are being conducted on their tribological characteristics. However, the friction and wear characteristics of the material should be studied in order to utilize the components manufactured using AM technology as mechanical parts. In this study, the friction and wear characteristics of acrylonitrile-butadiene-styrene (ABS)-like resin printed with stereo lithography apparatus (SLA) 3D printing are evaluated according to the viscosity of silicon oil lubricant using a ball-on-disk experiment. Lubricants with a viscosity of 500, 1000, and 2000 cSt are prepared for the experiment. If silicon oil lubricants are used during the ball-on-disk test, the coefficient of friction (COF) and wear rates are significantly reduced, and the higher the viscosity of the lubricant, the lower will be the COF and wear rates. It is also verified that the temperature of the specimen owing to friction also decreases according to the viscosity of the lubricant. This is because of the silicon oil film thickness, and the higher the viscosity of the lubricant, the thicker will be the oil film. More studies on the tribological characteristics of 3D printing materials and suitable lubricants will be required to use 3D printed parts as mechanical elements.

Tribological Characteristics of Magnetron Sputtered MoS$_2$ films in Various Atmospheric Conditions

  • Kim, Seock-Sam;Ahn, Chan-Wook;Kim, Tae-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1065-1071
    • /
    • 2002
  • The friction and wear behaviors of magnetron sputtered MoS$_2$ films were investigated through the use of a pin and disk type tester. The experiments were performed for two kinds of specimens (ground (Ra 0.5 $\mu\textrm{m}$) and polished (Ra 0.01 $\mu\textrm{m}$) substrates) under the following operating condifions : linear sliding velocities in the range of 22~66 mm/s (3 types), normal loads varying from 9.8~29.4 N(3 types) and atmospheric conditions of air, medium and high vacuum (3types). Silicon nitride pin was used as the lower specimen and magnetron sputtered MoS$_2$ on bearing steel disk was used as the upper specimen. The results showed that low friction property of the MoS$_2$ films could be identified in high vacuum and the specific wear rate in air was much higher than that in medium and high vacuum due to severe oxidation. It was found that the main wear mechanism in air was oxidation whereas in high vacuum accumulation of plastic flow and adhesion, were the main causes of wear.