• 제목/요약/키워드: friction and wear behaviors

검색결과 96건 처리시간 0.023초

고속화염용사코팅으로 제조된 WC-CoFe 코팅의 기계적 특성에 관한 연구 (The Mechanical Properties of WC-CoFe Coating Sprayed by HVOF)

  • 주윤곤;조동율;하성식;이찬규;천희곤;허성강;윤재홍
    • 열처리공학회지
    • /
    • 제25권1호
    • /
    • pp.6-13
    • /
    • 2012
  • HVOF thermal spray coating of 80%WC-CoFe powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and hard ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen by chrome plating and the brittleness of ceramics coatings. 80%WC-CoFe powder was coated by HVOF thermal spraying for the study of durability improvement of the high speed spindle such as air bearing spindle. The coating procedure was designed by the Taguchi program, including 4 parameters of hydrogen and oxygen flow rates, powder feed rate and spray distance. The surface properties of the 80%WC-CoFe powder coating were investigated roughness, hardness and porosity. The optimal condition for thermal spray has been ensured by the relationship between the spary parameters and the hardness of the coatings. The optimal coating process obtained by Taguchi program is the process of oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min and spray distance 8 inch. The coating cross-sectional structure was observed scanning electron microscope before chemical etching. Estimation of coating porosity was performed using metallugical image analysis. The Friction and wear behaviors of HVOF WC-CoFe coating prepared by OCP are investigated by reciprocating sliding wear test at $25^{\circ}C$ and $450^{\circ}C$. Friction coefficients (FC) of coating decreases as sliding surface temperature increases from $25^{\circ}C$ to $450^{\circ}C$.

분말 야금에 의해 소결된 강철의 트라이볼로지 특성 향상 (Improvement in Tribological Properties of Carbon Steel Sintered by Powder Metallurgy)

  • 최세이미;카림바예프 루슬란;편영식;아마노프 아웨즈한
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.244-252
    • /
    • 2020
  • Materials manufactured by powder metallurgy (PM) are widely used in various applications such as water pump, shock absorber, and airplane components due to the reduction in the cost and weight. In this study, tribological properties of carbon steel subjected by surface treatment were investigated. The main purpose is to increase the strength and improve the tribological properties by reducing pores that formed by PM. Moreover, the surface treatment was carried out at room and high temperatures (RT and HT). The surface roughness of the untreated (NON) and treated (AFTER) samples was measured. It was found that the surface roughness was reduced after both the RT AFTER and HT AFTER compared to RT NON sample. The tribological properties of the samples were performed against bearing steel ball under dry conditions. The friction coefficient of the RT NON samples was reduced by 22% and 56% RT AFTER and HT AFTER, respectively. The wear volume of the RT NON sample was also reduced by 43% and 87% RT AFTER and HT AFTER, respectively. Tribocorrosion tests were also performed and it was found that the surface of the RT AFTER, HT AFTER samples was less corroded compared to RT NON sample. The HT AFTER sample demonstrated a relatively higher corrosion potential in comparison with the RT AFTER samples. Hence, it was confirmed that after surface modification the surface roughness and hardness of the samples were significantly improved resulting in improvement in tribological and tribocorrosion behaviors of PM carbon steel.

플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동 (High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD))

  • 양영환;박찬영;이원준;김선주;이성민;김성원;김형태;오윤석
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

0.04% Gd-이상 스테인레스 강의 부식 및 마모성에 대한 집합조직 효과 (Effect of Texture on the Corrosion and Wear Behaviors of 0.04% Gd-Duplex Stainless Steels)

  • 백열;최용;문병문;손동성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.212-212
    • /
    • 2014
  • 0.04% Gd-duplex stainless steels (Gd-DSTSs) for neutron absorbing materials were inert arc-melted and poured into a Y-shape block with the size of $100{\times}100{\times}20[mm]$. The Gd-DSTS was hot rolled at $1200^{\circ}C$ followed by cold rolling to have 33% reduction. The average grain sizes of the rolling (RD), transverse (TD) and short transverse (ST) directions were 6, 7, $11{\mu}m$, respectively. The micro-hardnesses of the RD, TD and ST directions were 258.5, 292.3, 314.7 $H_V$, respectively. Corrosion potential and corrosion rate of the cold rolled Gd-duplex stainless steel in aerated artificial sea water and 0.1M $H_2SO_4$ solution were $0.2216V_{SHE}$, $0.0106A/cm^2$, $-0.0825V_{SHE}$, $0.0168A/cm^2$ for RD, $0.2210V_{SHE}$, $0.0077A/cm^2$, $0.0817V_{SHE}$, $0.0092A/cm^2$ for TD, $0.1056V_{SHE}$, $0.0059A/cm^2$, $0.0475V_{SHE}$, $0.0069A/cm^2$ for ST, respectively. The corrosion behavior depended on the texture, which were due to mainly grain boundary and minorly crystallographic texture. Friction coefficient and wear resistance were 2.07 and 0.48 mm, respectively.

  • PDF

Modeling the clutch energy and clutch life of a heavy duty vehicle

  • Akkurt, Ismail;Anlas, Gunay;Bedir, Hasan
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.21-39
    • /
    • 2018
  • Clutch energy is the thermal energy dissipated on the clutch disc, and it reaches its highest level during drive-off as a result of the difference between the angular speeds of the flywheel and clutch disc, and the torque transmitted. The thermal energy dissipated effects the clutch life. This study presents a new drive-off and thermal model to calculate the clutch energy for a rear wheel driven heavy-duty vehicle and to analyze the effects of clutch energy on temperatures of clutch pressure plate, flywheel and clutch housing. Three different driver profiles are used, based on the release of the clutch pedal in modulation zone: i) the pedal travels with the same speed all the way, ii) the travel speed of the pedal increases, iii) the travel speed of the pedal decreases. Vehicle test is performed to check the accuracy of the model. When compared to a simpler model that is widely used in the literature to calculate the clutch energy, the model used in this study calculates the clutch energy and angular speed behaviors of flywheel and transmission input shaft in better agreement with experimental results. Clutch wear and total clutch life are also estimated using the mean specific friction power.

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul;Krishna, S. Chenna;Venugopal, A.;Narayanan, P. Ramesh;Jha, Abhay K.;Ramkumar, P.;Venkitakrishnan, P.V.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.281-289
    • /
    • 2016
  • The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.