• Title/Summary/Keyword: friction Force

Search Result 1,629, Processing Time 0.022 seconds

Development of the Rubber Removal Primer to Reduce Pavement Damage for Removal of Rubber Deposits in Runways (활주로 고무 퇴적물 제거를 위한 포장 파손 저감형 사전처리제 개발 연구)

  • Kim, Young-Ung;You, Kwang-Ho;Cho, Nam-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.695-704
    • /
    • 2016
  • Rubber deposited during aircraft landing is known as the main cause of reducing surface friction force on wet surfaces. Thus, rubber deposits are removed at regular intervals for sae airplane landing. The high-pressure waterblast method, widely used for the removal of rubber deposits, is regarded as the main cause for the loss of surface material because in this method, water hits the surface directly at a high pressure. In this study, a rubber removal primer is developed to reduce surface damage by lowering the pressure of waterblast relatively during the removal of rubber deposits such that the deposits are removed efficiently even with a lower water pressure. To achieve this, basic materials appropriate for the primer were selected and their performance, penetration rate, and site applicability were evaluated. Based on the evaluations, the proportion of additive required for improving the performance of the basic materials was first determined. Then, the optimum mix ratio was derived through the evaluation of the effect on pavements, and the development of the rubber removal primer was completed.

A Study on Ring Face and Groove Wear during Engine Durability Test (엔진 내구시험 시 링 외주면 및 그루브 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2006
  • Ring and groove wear may not be a problem in most current automotive engines. However, a small change in ring face and groove geometry can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings and grooves are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be at the lower bound of aver-aged test values or a little below.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 2 - Effect of Groove Depth (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제2보 - 그루브 깊이의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.382-388
    • /
    • 2019
  • It is currently well known that surface textures act as lubricant reservoirs, entrap wear debris, and hydrodynamic bearings, which can lead to certain increases in load-carrying capacities. Until recently, the vast majority of research has focused on parallel sliding machine components such as thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and their hydrodynamic pressure is mainly generated by the wedge action. Following the first part of the present study that investigates the effect of groove position on the lubrication performances of inclined slider bearings, this paper focuses on the effects of groove depths and film thicknesses. Using a commercial computational fluid dynamics (CFD) code, FLUENT, the continuity and Navier-Stokes equations are numerically analyzed. The results show that the film thickness and groove depth have a significant influence on the pressure distribution. The maximum pressure occurs at the groove depth where the vortex is found and, as the depth increases, the pressure decreases. There is also a groove depth to maximize the supporting load with the film thickness. The friction force acting on the slider decreases with deeper grooves. Therefore, properly designed groove depths, depending on the operating conditions, can improve the load-carrying capacity of inclined slider bearings as compared to the bearings without a groove.

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

Effect of Oil Groove Shapes on the Characteristic of the Flow Rate at the Journal Bearing with Vertical Type (수직형 저널 베어링의 유량특성에 대한 그루브 형상의 영향)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1664-1670
    • /
    • 2015
  • As journal bearing has a sliding motion between the shaft and bearing with lubricating oil, it produces a hydrodynamic lubrication condition. Journal bearing can receive a large force because it takes a distributed load at the large friction face. As the oil groove or oil hole is made in the journal bearing surface for the journal bearing smoothly working under a hydrodynamic lubrication condition, sufficient lubricating oil is supplied through the clearance of journal bearing. The performance of the journal bearing is changed according to the shapes, sizes and positions of an oil groove. In this paper, the flow rate according to the oil groove shapes (triangle, semicircle and rectangle) among the various oil supply conditions was measured. The shape that discharges the highest flow rate was observed and the groove shape of optimal performance for the journal bearing was determined. The results showed that the flow rate increases with decreasing operating temperature, the influence of temperature on the flow rate decreased with increasing rotational speed, and flow rate in the triangular groove shape was greater than in other shapes.

Studies on Strength of Netting (1) The Decrease in Strength of Netting Twines by Knotting (그물감의 강도에 관한 연구 (1) 그물실의 강도가 매듭에서 감소하는 기구)

  • KIM Dai An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1976
  • 1) The decrease in strength of netting twines at the knot may be regarded to be due mainly to the frictional force acting on the tip of the knot. The knot strength T may be given by $$T=\frac{T_0}{1+{\mu}\frac{s}{\rho}\varrho^{\mu\theta}$$ were $T_0$ is the tensile strength of unknotted netting twines, $\mu$ the coefficient of friction beween two netting twines forming a knot, s the contact length between the tip and the netting twine compressing it, $\rho$ the radius of curvature of the compressing, and $\theta$ the angle at which the compressing rubs with another one in the vicinity of the opposite tip. 2) Knots are arranged in order of strength as follows : the reef knot pulled lengthwise $\risingdotseq$ the trawler knot pulled breadtwise the reef knot pulled breadthwise.

  • PDF

Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis (유한요소해석을 이용한 M8 블라인드 리벳 너트 형상 최적 설계)

  • Gu, B.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • Blind rivet nuts are increasingly used in automotive for the joining of sheets. Their application, however, requires appropriate design guides to prevent catastrophic events arising from the failure of joints. In this study, the shaft shape of a frequently used M8 blind rivet nut is optimized based on 3D numerical analysis of the blind rivet nut considering the characteristics of thread. The thread needs to be modeled to suitably consider the fastening of the M8 bolt after the crimping process. FE analysis showed that while the friction in the contact between crimp flange and plate has no significant effect on the crimp geometry, shaft thickness (t) and shaft height (h) are the most significant design variables. The parameter study including various combinations of t and h reveals that they affect the gap (the distance between the crimped flange and the plate that develops through riveting) and the load acting on the plate. The gap is an indicator of the tightening force. It is found that t is inversely proportional to the gap, and proportional to the load, whereas h is proportional to the gap and inversely proportional to the load. Based on our FE analysis results, we propose the range 0.062 < t/h < 0.1 to ensure sufficient fastening (high clamping load, small gap) of the M8 blind rivet nut. The design guide for determining the t/h ratio proposed in this study can be used for general quantitative analysis of the size and the t/h ratio of blind rivet nuts.

Earth Pressure on the Cylindrical Wall in Cohesionless Soils (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압)

  • 천병식;신영완
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.175-187
    • /
    • 2003
  • The earth pressure acting on the cylindrical retaining wall in cohesionless soils is different from that on the retaining wall in plane strain condition due to three dimensional arching effect. Accurate estimation of earth pressure is required for the design of vertical cylindrical retaining wall. Failure modes of the ground behind vertical shaft are dependent on ground in-situ stress conditions. Failure modes are actually divided into two modes of cylindrical failure mode and funnel-shaped mode with truncated cone surface. Several researchers have attempted to estimate the earth pressure on cylindrical wall for each failure mode, but they have some limitations. In this paper, several equations for estimating the earth pressure on cylindrical wall in cohesionless soils are investigated and new formulations for two failure modes are suggested. It rationally takes into account the overburden pressure, wall friction, and force equilibriums on sliding surface.