• Title/Summary/Keyword: freundlich adsorption isotherm

Search Result 379, Processing Time 0.022 seconds

Research on Adsorption Capacity of Acetaminophen for Constructed Wetland Design (인공습지 설계를 위한 여재 아세트아미노펜 흡착능 실험)

  • Jin Hong;Yuhyeon Kim;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.272-278
    • /
    • 2024
  • Due to industrialization, a trace amount of residues of pharmaceuticals and personal hygiene products (PPCPs) flows into the ecosystem, polluting the ecosystem. In particular, it was intended to remove trace pollutants flowing into the effluent due to the increase in the amount of acetaminophen detected after COVID 19. To conduct this experiment, selected 6 media which are suitable for construcgted wetland and isothermal adsorption experiments. Langmuir equation and the Freundlich equation were used to calculate the maximum removal rate of acetaminophen. Among them, the Freundlich equation showed a higher result value of 0.9823. It was applied when forming constructed wetlands in urban areas to model the reduction rate of acetaminophen in wetlands.

A Comparative Study for Removal of Mercury and Lead by Microorganisms (미생물흡착을 이용한 수은과 납의 제거에 관한 비교 연구)

  • 서정호;서명교;곽영규;강신묵;노종수;이국의;최윤찬
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.98-103
    • /
    • 1998
  • A study on the removal of mercury and lead by microorganisms, Saccharomyces cerevisiae and Aureobasidium pullulans, was performed, in which the comparison of adsorption model between these two heavy metals was done. The amounts of mercury removed were more than those of lead in both microorganisms. In case of mercury, the adsorption isotherm of S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. In the case of lead, however, the adsorption isotherm had opposite results. The adsorption rate of mercury to S. cerevisiae was faster than that of A. pullulans, but in the case of lead, it revealed contrary results. It seems, therefore, that the type of microorganisms used as biosorbents should be selected differently with the type of heavy metals removed for applying these to real adsorption process.

  • PDF

Surface Modified Agave sisalana as an Adsorbent for the Removal of Nickel from Aqueous Solutions - Kinetics and Equilibrium Studies

  • Padmini., E.;Kalavathy, M. Helen;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • In the present study Sisal fiber obtained from the leaves of Agave sisalana has been chosen to validate its viability as an adsorbent for the removal of Nickel from aqueous solutions. The material was also surface modified and its effect on adsorption of Nickel was also studied. Agave sisalana fiber was found to be a cheap and effective adsorbent doing away with the need to activate the material therby reducing processing cost. The equilibrium studies indicated that the adsorption capacity of raw fiber and the surface modified fiber was 8.66 and 9.77 mg/g respectively with the Langmuir isotherm describing the adsorption phenomena better than the Freundlich and Temkin isotherm. The adsorption was found to be exothermic from the thermodynamic studies and the kinetics showed that the adsorption phenomena were second order.

Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions (단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Seong-Heon;Lee, Seong-Tae;Kang, Byung-Hwa;Kang, Se-Won;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • BACKGROUND: Heavy metal adsorption not only depends on rapid cooling slag(RCS) characteristics but also on the nature of the metals involved and on their competitive behavior for RCS adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu, Cd and Zn in single- and multi-metal forms by RCS.METHODS AND RESULTS: Both single- and multi-metal adsorption experiments were conducted to determine the adsorption characteristics of RCS for the heavy metals. Adsorption behaviors of the heavy metals by RCS were evaluated using both the Freundlich and Langmuir adsorption isotherm equations. The maximum adsorption capacities of metals by RCS were in the order of Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g) in the single-metal adsorption isotherm and Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g) in the multi-metal adsorption isotherm. Based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation, multi-metal adsorption behaviors differed from single- metal adsorption due to competition. Cadmium and Zn were easily exchanged and substituted by Cu during multi-metal adsorption.CONCLUSION: Results from adsorption experiments indicate that competitive adsorption among metals increases the mobility of these metals.

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Decolorization of Acid Orange II from Aqueous Solutions using Loess (황토를 이용한 Acid Orange II의 색도제거)

  • Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • Loess, a natural clay, was evaluated as an adsorbent for the decolorization of Acid Orange II, an azo and reactive dye, from aqueous solution. Adsorption studies were performed at $30^{\circ}C$ and the effect of reaction time, loess dosage, initial concentration, loess particle size, pH, agitation rate were investigated to determine the optimum operation conditions. The removal efficiencies of color were measured to evaluate the effectiveness of loess. From this study, it was found that optimal reaction time was 10 min. Color removal efficiencies of Acid Orange II were increased as higher loess dosage, initial concentration and agitation rate. However, color removal efficiencies decreased when pH is high and loess particle becomes large. Adsorption of Acid Orange II fitted to the pseudo-second-order rate kinetics more than first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of Acid Orange II onto loess fitted to the Freundlich model more than Langmuir model.

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

Study on of Process Parameters for Adsorption of Reactive Orange 16 Dye by Activated Carbon (활성탄에 의한 Reactive Orange 16 염료 흡착에 대한 공정 파라미터 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.667-674
    • /
    • 2020
  • The adsorption of reactive orange 16 (RO 16) dye by activated carbon was investigated using the amount of adsorbent, pH, initial concentration, contact time and temperature as adsorption variables. The investigated process parameters were separation coefficient, rate constant, rate controlling step, activation energy, enthalpy, entropy, and free energy. The adsorption of RO 16 was the highest at pH 3 due to the electrostatic attraction between the cations (H+) on the surface of the activated carbon and the sulfonate ions and hydroxy ions possessed by RO 16. Isotherm data were fitted into Langmuir, Freundlich and Temkin isotherm models by applying the evaluated separation factor of Langmuir (RL=0.459~0.491) and Freundlich (1/n=0.398~0.441). Therefore, the adsorption operation of RO 16 by activated carbon was confirmed as an appropriate removal method. Temkin's adsorption energy indicated that this adsorption process was physical adsorption. The adsorption kinetics studies showed that the adsorption of RO 16 follows the pseudo-second-order kinetic model and that the rate controlling step in the adsorption process was the intraparticle diffusion step. The positive enthalpy change indicated an endothermic process. The negative Gibbs free energy change decreased in the order of -3.16 <-11.60 <-14.01 kJ/mol as the temperature increased. Therefore, it was shown that the spontaneity of the adsorption process of RO 16 increases with increasing temperature.