• Title/Summary/Keyword: fretting-fatigue

Search Result 78, Processing Time 0.033 seconds

Contact Pressure Effect on Fretting Fatigue of Aluminum Alloy A7075-T6 (알루미늄 합금 A7075-T6의 프레팅 피로에서 접촉압력의 영향)

  • Cho, Sung-San;Hwang, Dong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.531-537
    • /
    • 2012
  • Fretting fatigue tests were conducted to investigate the effect of contact pressure on fretting fatigue behavior in aluminum alloy A7075-T6. Test results showed that when the contact pressure is so low that gross or partial slip occurs at the pad/specimen interface, fretting fatigue damage increases with the contact pressure. However, when the contact pressure is high enough to prevent slip at the interface, fretting fatigue damage decreases with the contact pressure. In order to understand how the contact pressure influence the fretting fatigue damage, finite element analyses were conducted and the analysis results were used to evaluate critical plane fretting fatigue damage parameters and their components. It is revealed that fretting fatigue damage estimated with the parameters exhibits the same variation as that in the tests. Moreover, the variation of fretting fatigue damage is closely related with that of the maximum normal stress on the critical plane rather than the strain amplitude on the critical plane.

Development of Fretting Fatigue Parameter (접촉피로 파라미터의 개발)

  • Lee, Hyuk-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2011
  • In this study, new multi-axial, critical plane based, fretting fatigue crack initiation parameter is developed by the addition of a new term into the Modified Shear Stress Range(MSSR) parameter. The newly developed parameter (MSSR') is then used to evaluate fretting fatigue life of titanium alloy, Ti-6A1-4V with various contact conditions. Finite element analysis is also used in order to obtain stress distribution on the contact surface during fretting fatigue test, which is then used for the calculation of fretting fatigue parameter. The MSSR' parameter shows better performance in predicting fretting fatigue lives from the conventional fatigue data, and less scattering within fretting fatigue data with different contact geometries.

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.

Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load (알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가)

  • Kim, Jong-Sung;Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

A Study on Fretting Fatigue of High Strength Aluminum Alloys (고강도 알루미늄 합금의 Fretting Fatigue에 관한 연구)

  • Lee, Hak-Sun;Kim, Sang-Tae;Choi, Sung-Jong;Yang, Hyun-Tae;Kim, Jae-Kyoung;Lee, Dong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.168-173
    • /
    • 2004
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decrease in 50-70% of the plain fatigue strength. This may be observed in aircraft, automobile and nuclear power plant used in special environment and various loading conditions. In the present study, the characteristics of the fretting fatigue are investigated using the two aluminum alloy(Al2024-T3511 and Al7050-T7451). Through the experiment, it is found that the fretting fatigue strength of the Al7050-T7451 alloy decreased about 50% from the plain fatigue strength, while the fretting fatigue strength of the Al2024-T3511 alloy decreased about 45%. The tire track was widely observed in fracture surface area of oblique crack which was induced by contact pressure. These results can be the basic data to the structural integrity evaluation of aluminum alloy subjected to fretting damage.

  • PDF

A Study on Fretting Fatigue Life Prediction for Cr-Mo Steel(SCM420) (크롬-몰리브덴강(SCM420)에 대한 프레팅 피로수명 예측에 관한 연구)

  • Kwak, Dong-Hyeon;Roh, Hong-Rae;Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.123-130
    • /
    • 2007
  • Recently, a lot of work and interest have been devoted to the development of multiaxial fatigue parameters for fretting fatigue life prediction. In this study, the fretting fatigue lift and critical location ware estimated and evaluated through the multiaxial fatigue theories in a cylinder-on-flat contact configuration far Cr-Mo steel, SCM420, the material commonly is used in gears of the automobile and rollers of the conveyor. The strain-life curve was obtained from fatigue test for SCM420. The Fretting fatigue life and critical location were estimated through stress distributions, SWT-parameters and FS-parameters obtained from FEA. This paper showed possibility of applying multiaxial fatigue theories to fretting fatigue lift prediction comparing predicted life with experimental results.

Evaluation of Fretting Fatigue Behavior for Railway Axle Material (철도 차축재료의 프레팅 피로거동 평가)

  • Choi, Sung-Jong;Kwon, Jong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.139-145
    • /
    • 2007
  • Fretting is a kind of surface damage mechanism observed in mechanically jointed components and structures. The initial crack under fretting damage occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. This can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these experiments, it is found that the fretting fatigue limit decreased about 37% compared to the plain fatigue limit. In fretting fatigue, the wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

The Effect of Degradation on the Fretting fatigue for 1Cr-0.5Mo Steel (1Cr-0.5Mo 강의 재질열화가 프레팅 피로거동에 미치는 영향)

  • Kwon, Jae-Do;Choi, Sung-Jong;Kim, Kyung-Soo;Bae, Yong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1979-1985
    • /
    • 2003
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decreases in 50-70% of the plain fatigue strength. This may be observed in the fossil power plant and the nuclear power plant used in special environments and various loading conditions. The thermal degradation of material is observed when the heat resisting steel is exposed for long period time at the high temperature. In the present study, the degraded 1Cr-0.5Mo steel used for long period time at high temperature (about 515$^{\circ}C$) and artificially reheat-treated materials are prepared. These materials are used for evaluating an effect of thermal aging on the fretting fatigue behavior. Through the experiment, it is found that the fretting fatigue endurance limit of the reheat-treated 1Cr-0.5Mo steel decreased about 46% from the non-fretting fatigue endurance limit, while the fretting fatigue endurance limit of the degraded 1Cr-0.5Mo steel decreased about 53% from the non-fretting fatigue endurance limit. The maximum value of fatigue endurance limit difference is observed as 57%(244 MPa) between the fretting fatigue of degraded material and non-fretting fatigue of reheat-treated material. These results can be a basic data to a structural integrity evaluation of heat resisting steel considered to thermal degradation effect.

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

A Study on the Nucleation of Fretting Fatigue Cracks at the Heterogeneity Material (이종재료에서 프레팅 피로 균열의 생성에 관한 연구)

  • Goh Jun Bin;Goh Chung Hyun;Lee Kee Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 2005
  • Since fretting fatigue damage accumulation occurs over relatively small volumes, the role of the microstructure is quite significant in fretting fatigue analysis. The heterogeneity of discrete grains and their crystallographic orientation can be accounted for using continuum crystallographic cyclic plasticity models. Such a constitutive law used in parametric studies of contact conditions may ultimately result in more thorough understanding of realistic fretting fatigue processes. The primary focus of this study is to explore the influence of microstructure as well as the magnitude of the normal force and tangential force amplitude during the fretting fatigue process. Fretting maps representing cyclic plastic strain behaviors are also developed to shed light on the cyclic deformation mechanisms.