• 제목/요약/키워드: fret digit recognition

검색결과 2건 처리시간 0.02초

Guitar Tab Digit Recognition and Play using Prototype based Classification

  • Baek, Byung-Hyun;Lee, Hyun-Jong;Hwang, Doosung
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.19-25
    • /
    • 2016
  • This paper is to recognize and play tab chords from guitar musical sheets. The musical chord area of an input image is segmented by changing the image in saturation and applying the Grabcut algorithm. Based on a template matching, our approach detects tab starting sections on a segmented musical area. The virtual block method is introduced to search blanks over chord lines and extract tab fret segments, which doesn't cause the computation loss to remove tab lines. In the experimental tests, the prototype based classification outperforms Bayesian method and the nearest neighbor rule with the whole set of training data and its performance is similar to that of the support vector machine. The experimental result shows that the prediction rate is about 99.0% and the number of selected prototypes is below 3.0%.

타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교 (Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition)

  • 허재혁;이현종;황두성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 2019
  • 본 논문에서는 기타 타브 악보에서 추출한 프렛 번호를 대상으로 학습 알고리즘의 분류 성능을 비교한다. 타브 악보로부터 세그먼트를 통해 추출된 타브 숫자 데이터는 타브 선과 악보 기호가 포함하기 때문에 레이블링 기법과 비선형 필터를 이용하여 프렛 숫자를 추출한다. 추가적인 데이터 확보를 위해 전처리가 수행된 데이터에 대해 4 방향으로 이동 연산을 수행한다. 선택된 학습 모델은 베이지안 분류기, 지지벡터기기, 프로토타입 기반 학습, 다층 신경망 그리고 합성곱 신경망 모델 등이다. 실험 결과 베이지안 분류기는 85.0% 평균 정확도를 보였고 나머지 분류기는 99.0% 이상의 평균 정확도를 보였다. 일반화 성능과 전처리 단계를 고려 시 합성곱 신경망이 다른 학습 모델들보다 우수하다.