• Title/Summary/Keyword: fresh and hardened concrete property

Search Result 23, Processing Time 0.016 seconds

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.

Evaluation for Applicability of Reinforced Concrete Structure with Domestic Pond Ash (국산 매립회 골재를 사용한 콘크리트 구조물의 적용성 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Chae, Sung-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.541-550
    • /
    • 2011
  • Many researches have been performed on concrete with fly ash and bottom ash. However researches on concrete with pond ash (PA) and its application to RC (Reinforced Concrete) structure are limitedly carried out. This paper presents an applicability of PA concrete in construction of real size structure. Referring to the previous study, 2 domestic PA samples with normal performance are selected and 2 replacement ratios (25% and 50%) to fine aggregate are considered for 5 PA concrete structures consisting of column, slab, and wall. In order to evaluate the property of fresh concrete, several tests including air content, slump, and setting time are performed. Using cored out samples from hardened PA concrete structure, tests for strength, resistance to carbonation and chloride penetration are carried out and compared with control samples. Additionally, tests for rebound hardness, drying shrinkage, and hydration heat are performed for PA concrete structure. The test results showed that PA concrete has reasonable strength and durability performances compared to those of normal concrete. Therefore, its potential application to RC structure is promising. The PA aggregate can be more actively used for RC structures with better quality control for content of fly ash, bottom ash, and unburned carbon.

A Study on the Engineering Property and Durability of Recycled Concrete with Replacement Ratio of Recycled Fine Aggregate and Fly-ash (재생잔골재 및 플라이애시 대체율에 따른 재생콘크리트의 공학적 특성 및 내구성능에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Whan;Cho, Bong-Suk;Kim, Young-Sun;Moon, Hyung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.89-97
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate resource and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. On the other hand, the treatment of fly-ashes that of industrial by-product originated in the steam power plant is discussed by the continuous increasing of origination quantities. In the ease of using fly-ash, advantages are the improvement of workability, viscosity and long-time strength, and the reduction of hydration heat under the early ages, as the admixtures for concrete, but the studies for the application of fly-ash as recycled concrete admixtures are inadequacy. There fore, in this study, through investigating the properties of fresh, hardened and durability according to the replacement of recycled fine aggregate and fly-ash, it is intended to propose the fundamental data for structural application of recycled concrete using recycled fine aggregate and fly-ash. As the result of this study, they arc shown that the engineering properties and durability, in the case of replacement ratio 100% of recycled fine aggregate, arc similar to those of concrete using natural fine aggregate, so it is considered that recycled fine aggregate could be used as the fine aggregate for concrete. Also, the performances of recycled concrete are improved by replacing fly-ash.

  • PDF