• Title/Summary/Keyword: frequency-response

Search Result 5,571, Processing Time 0.038 seconds

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.

The influence of extremely low frequency magnetic field on cardiovascular response

  • Kim, Jeong-Soo;Jeong, Ji-Hoon;Sung, Ji-Hyun;Bae, Ki-Lyong;Kum, Chan;Kang, Hee-Yun;Sohn, Uy-Dong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.274.1-274.1
    • /
    • 2002
  • There have been some reports showing that cardiovascular response is affected by exposure to extremely low frequency magnetic field (ELF-MF). In this experiment. we intended to observe if ELF-MF affects the basal level of cardiovascular response and effect of drugs acting on sympathetic nervous system. Rats exposed to MF (60 Hz. 20 G) for 1 or 5 days and sham were anesthetized with pentobarbital-Na. Carotid artery and jugular vein were intubated to measure blood pressure (BP) and inject drug respectively. (omitted)

  • PDF

Serial pendulum DVA design using Genetic Algorithm (GA) by considering the pendulum nonlinearity

  • Lovely Son;Firman Erizal;Mulyadi Bur;Agus Sutanto
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.549-556
    • /
    • 2024
  • A serial pendulum dynamic vibration absorber (DVA) was designed to suppress the vibration of two degrees of freedom (Two-DOF) structure model. The optimal DVA parameters are selected using a genetic algorithm (GA) by minimizing the fitness function formulated from the system's frequency response function (FRF). Two fitness function criteria, using one and two target frequency ranges, were utilized to calculate the optimal DVA parameters. The optimized serial pendulum DVA parameters were used to reduce structural vibration under free and forced excitation conditions. The simulation study found that the serial pendulum DVA can effectively reduce the vibration response for a small excitation amplitude. However, the DVA performance decreases for a large excitation amplitude due to the nonlinearity of pendulum motion, and the percentage of vibration response attenuation is smaller than that obtained using a small excitation amplitude.

Manufacturing Cost Optimization of Ultrasonic Horn for Flip-chip Bonding using Tolerance Design (공차설계에 의한 플립칩 접합용 초음파 혼의 제작 비용 최적화)

  • Kim, Jong-Hyok;Kwon, Won-Tae;Lee, Soo-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.879-886
    • /
    • 2012
  • The ultrasonic horn used for bonding of flip chip has been designed to vibrate at a natural frequency. The ultrasonic horn must be manufactured accurately in physical terms, because the small change of mechanical properties may result in the significant change of natural frequency. Therefore, tight tolerance is inevitable to keep the natural frequency in acceptable range. However, since tightening of the tolerance increases the manufacturing cost significantly, trade-off between the cost and accuracy is necessary. In this research, an attempt was made to design the ultra sonic horn within acceptable natural frequency while the manufacturing cost was kept as low as possible. For this purpose, among the 18 tolerances of physical terms of the ultrasonic horn, the most important 4 factors were selected using Taguchi method. The equation to relate those main factors and the natural frequency was made using response surface method. Finally, optimal design scheme for minimum manufacturing cost without a loss of performance was determined using SQP method.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.

Vibration Analysis of wind turbine gearbox with frequency response analysis (주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석)

  • Park, Hyunyong;Park, Junghun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

Feeding Frequency Influences the Growth, Food Consumption, Body Composition and Hematological Response of the Korean Rockfish Sebastes schlegelii (조피볼락(Sebastes schlegelii)의 성장, 사료 섭취, 체성분 및 혈액성상에 미치는 사료 공급 횟수의 영향)

  • Oh, Sung-Yong;Park, Jin Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.600-606
    • /
    • 2016
  • The effects of feeding frequency on the growth, food consumption, body composition, and hematological response of the Korean rockfish Sebastes schlegelii were investigated for 77 days at ambient water temperatures (17.2-24.5℃) in a sea cage in Tongyeong, Korea. Three replicate groups of fish were hand-fed to satiation with a commercial diet in one of four different feeding frequency trials (one meal every 2 days, and one, two and three meals per day). At the end of the experiment, the mean weight gain, specific growth rate, and daily feed intake of fish fed one and two meals per day were significantly higher than those of fish fed one meal every 2 days or three meals per day. The feed efficiency of the fish fed three meals per day was significantly lower than that of the fish in the other groups. The glucose concentration of fish fed one meal every 2 days was significantly higher than that of the other groups. We conclude that the optimum feeding frequency for improving the growth of Korean rockfish weighing 100-200 g reared in sea cages is one meal per day under our experimental conditions.

Design Improvement via Structural Dynamics Modification - Application to Noise Reduction in Outdoor Unit of Air Conditioner (구조물 동특성 변경을 통한 설계 개선 -공조기 실외기 소음 저감 적용)

  • Choi, Sang-Hyeon;Park, Nam-Gyu;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.355-364
    • /
    • 2002
  • The goal of this research is to reduce noise level of an outdoor unit of air conditioner by changing its dynamic characteristics using SDM (structural dynamics modification) technique. At first, the emitting noise was measured and analyzed. The measurement records show the most critical frequency components which influences on the noise level. Then it was tried to move the natural frequencies outside the critical frequency region by SDM. Since it is very difficult to get a reliable FE model of air conditioner, experimentally measured frequency response functions were used to derive sensitivities that are very important to obtain design changes. The positions of modification and the thickness of modifying structures were determined to improve the dynamic characteristics of air conditioner. The recommended design guideline to move its natural frequencies outside the targeting frequency range was obtained. Then in order to prove its effectiveness, the changed design was experimentally tested and found that the SDM result is very effective to reduce not only its vibration but also its emitting noise.

Experimental Verification of Spectral Element Analysis for the High-frequency Dynamic Responses of a Beam with a Surface Bonded Piezoelectric Transducer (압전소자가 부착된 보의 고주파수 동적응답에 대한 스펙트럼 요소 해석의 실험적 검증)

  • Kim, Eun-Jin;Sohn, Hoon;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1347-1355
    • /
    • 2009
  • This paper demonstrates the validity of spectral element analysis for modeling the high-frequency dynamic behaviors of a beam with a surface-bonded piezoelectric wafer through a laboratory test. In the spectral element analysis, the high-frequency electro-mechanical interaction can be considered properly with relatively low computational cost compared to the finite element analysis. In the verification test, a cantilever beam with a surface-bonded piezoelectric wafer is forced to be in steady-state motion by exerting the harmonic driving voltage signal on the piezoelectric wafer. A laser scanning vibrometer is used to obtain the overall dynamic responses of the structure such as resonance frequencies, the associated mode shapes, and frequency response functions up to 20 kHz. Then, these dynamic responses from the test are compared to those computed by the spectral element analysis. A two-dimensional finite analysis is conducted to obtain the asymptotic solutions for the comparison purpose as well.