• Title/Summary/Keyword: frequency-response

Search Result 5,571, Processing Time 0.037 seconds

A Study on the Flow and Control Characteristics of Magneticfluid in Actuator (액추에이터에서의 자성유체 제어 및 유동 특성에 관한 연구)

  • Kim, Joong;Chun, Un-hack;Lee, Hee-Sang;Lee, Bong-Gyu;Hwang, Seung-Sik;Oh, Chang-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.258-267
    • /
    • 1999
  • The aim of the study is to provide fundamental information for the development of magneticfluid actuator. To achieve the aim, the force and dynamic characteristics of magenticfluid are investigated by experiment for the various of tube diameter, height and position of magneticfluid column in magneticfield according to supplied voltage of solenoid coil, wave form and frquency. From this study, actuating force of magneticfluid is generated by magneticfield. The magnitude of force increases as the intensity of magneticfield becomes strong and the center of magneticfield becomes lower than the center of magneticfluid column. And the force of magneticfluid relates to the volume of magneticfluid more than the height and diameter. The response delay time decreases as the height of magmeticfluid more than the height and diameter. The response delay time decrease as the height of magneticfluid column becomes longer and the center of magneticfield becomes lower than the center of magniticfluid column. But, the approaching time increases as supplied voltage becomes higher and the center of magneticfiled becomes higher than the center of magniticfluid column. The frequency generating maximum force is 1Hz and the critical frequency is about 4Hz.

  • PDF

Experimental Structural Dynamic Modification of Fixture for Vibration Testing (진동시험용 치구의 실험적 구조변경 설계)

  • 정의봉;오영세;김준엽
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.180-186
    • /
    • 1998
  • Vibration test fixture is used in random vibration control testing. The specified reference spectrum should be transmitted equally to the specimen attachment points on the fixture. In most practical cases, however, spectrum at each of specimen attachment points may be quite different from the specified reference spectrum because of the dynamic characteristics of vibration test fixture. This paper proposes the method of experimental dynamic modification of fixture system for vibration test so that the reference spectrum can be transmitted to the specimen attachment points without distortion. The stiffness of mounts of specimen and the thickness of fixture are considered as design variables. The frequency response functions of specimen used for input data are obtained from vibration testing, and the frequency response functions of fixture are obtained from finite element modeling. The sensitivities of frequency response functions at specimen attachment points to the mount stiffness are derived from synthesis method of transfer function. And the sensitivities to the thickness of fixture are also derived from finite element modeling. The presented method is verified by computer simulation and vibration testing.

  • PDF

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

Prediction of nonlinear characteristics of soil-pile system under vertical vibration

  • Biswas, Sanjit;Manna, Bappaditya;Choudhary, Shiva S.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.223-240
    • /
    • 2013
  • In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak's continuum approach was also used to predict the nonlinear behaviour of soil-pile system. The continuum approach was found to be useful for the prediction of the nonlinear frequency-amplitude response of full-scale pile after introducing the proper boundary zone parameters and soil-pile separation lengths.

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.

Updating Algorithms of Finite Element Model Using Singular Value Decomposition and Eigenanalysis (특이값 분해와 고유치해석을 이용한 유한요소모델의 개선)

  • 김홍준;박영필
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.163-173
    • /
    • 1999
  • Precise and reasonable modelling is necessary and indispensable to the analysis of dynamic characteristics of mechanical structures. Also. the effective prediction of the change of modal properties due to the variation of design parameters is required especially for the application of finite element method to the structural dynamics problems. To meet those necessity and requirement, three model updating algorithms are proposed for finite element methods. Those algorithms are based on sensitivity analysis of the modal data obtained from experimental modal analysis(EMA) and analytical modal analysis(AMA). The adapted sensitivity analysis methods of the algorithms are 1)eigensensitivity(EGNS) method. 2)frequency response function sensitivity(FRFS) method. 3)sensitivity based element-by-element method (SBEEM), Singular value decomposition(SVD) is used for performing eigenanalysis and parameter estimation in the updating process. Those algorithms are applied to finite element of a plate and the updating capability of each algorithm is compared in terms of accuracy. reliability and stability of the updating process. It is shown that the model updating method using frequency response function is superior to the other methods in view of various updating capabilities.

  • PDF

Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module (진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가)

  • Shim, Hee-Jin;Kim, Han-Chul;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

Seismic Evaluation of Structural Integrity of Main Cooling-Water Pump by Response Spectrum Analysis (응답스펙트럼법을 이용한 지진하중을 받는 원전용 주냉각수펌프의 내진 건전성 평가)

  • Chung, Chul-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1773-1778
    • /
    • 2010
  • To evaluate the structural integrity of the main cooling-water pump of a nuclear power plant under different seismic conditions, the seismic analysis was performed in accordance with IEEE-STD-344 code. The finite element computer program, ANSYS, was used to perform both mode frequency analysis and response spectrum analysis for the pump assembly. The natural frequencies, the mode shapes, and the mode participation factors were obtained from the results of the mode frequency analysis. The stresses resulting from various loadings and their combinations were within the allowable limits specified in the above-mentioned IEEE code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the IEEE code. Thus, it was proved that the structural integrity of the pump assembly was satisfactory.

Applications of Spectral Finite Element Method for Vibration Analysis of Sandwich Plate with Viscoelastic Core (스펙트럴유한요소법을 적용한 점탄성층 샌드위치평판의 진동해석)

  • Lee, Sung-Ju;Song, Jee-Hun;Hong, Suk-Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.155-164
    • /
    • 2009
  • In this paper, a spectral finite element method for a rectangular sandwich plate with viscoelastic core having the Levy-type boundary conditions has been plated. The sandwich plate consists of two isotropic and elastic face plates with a surfaced-bonded viscoelastic core. For the analysis, the in-plane and transverse energy in the face plates and only shear energy in the core are considered, respectively. To account for the frequency dependent complex shear modulus of the viscoelastic core, the Golla-Hughes-McTavish model is adopted. To evaluate the validity and accuracy of the proposed method, the frequency response function and dynamic responses of the sandwich plate with all edges simply supported subject to an impact load are calculated and compared with those calculated by a finite element method. Though these calculations, it is confirmed that the proposed method is very reliable and efficient one for vibration analysis of a rectangular sandwich plate with viscoelastic core having the Levy-type boundary conditions.