• Title/Summary/Keyword: frequency-response

Search Result 5,570, Processing Time 0.033 seconds

A New Control Method of Series Single-Phase Hybrid Active Power Filter (직렬형 단상 하이브리드 능동 전력필터의 새로운 제어법)

  • Kim, Jin-Sun;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.149-151
    • /
    • 2005
  • This paper deals with the novel control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active power filters. To construct two-axes coordinate, an imaginary second phase was made by giving time delay to line current. In this proposed method, the new signal, which was the delayed through the filtering by the phase-delay property of low-pass filter, is used as the secondary phase. Because two phases have different phase, instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying gain of filter by compensation current using the rotating reference frames that synchronizes with source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames. This paper shows the experimental results, which provide a high accuracy and extremely fast response of single-phase hybrid active Bower filter under the operation with the proposed control method.

  • PDF

A study on Designing Methods and Characteristics of an Indoor Two-way CATV Amplifier (옥내용(屋內用) 양방향(兩方向) CATV 증폭기(增幅器)의 설계(設計) 및 특성(特性)에 관한 연구(硏究))

  • Kim, Gee-Jung;Pank, Chong-Yeun;Jang, Mok-Soon;Son, Tea-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.916-918
    • /
    • 1995
  • This paper has researched designing methods and characteristics of the indoor two-way CATV amplifier to amplify the weak signals and to separate the signals in the forward and the reverse channels in the cable system. It consists of diplex filters, equalizers, attenuators and amplifier modules. With the experimental results for frequency response, gain and slope controls, noise figures, return losses, distortion characteristics, we concluded that the operating capabilities of the amplifier developed in this research satisfy the design conditions.

  • PDF

Identification of Structural Dynamic Systems (구조물의 동특성 추정방법에 관한 연구)

  • 윤정방;소봉정선
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.113-119
    • /
    • 1989
  • Methods for identification of modal properties of linear structures are presented. The extended Kalman filtering technique is employed. The state equation is formulated by two different ways, namely by the time domain and frequency domain approaches. Verifications are carried out by using the simulated records of ground acceleration and structural response. Then the techniques are applied to the estimation of modal parameters of a scaled model for a 3-story building which is installed on a shaking table.

  • PDF

New Impedance Matching Scheme for 60 GHz Band Electro-Absorption Modulator Modules

  • Choi, Kwang-Seong;Chung, Yong-Duck;Kang, Young-Shik;Jun, Dong-Suk;Ahn, Byoung-Tae;Moon, Jong-Tae;Kim, Je-Ha
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.393-396
    • /
    • 2006
  • This letter proposes a new impedance matching scheme of a traveling wave electro-absorption modulator (TWEAM) module for a 60 GHz band radio-over-fiber (ROF) link. A microstrip band pass filter (BPF) was used to achieve impedance matching at the 60 GHz band, and termination resistance was carefully designed to obtain an input impedance close to $50\;{\Omega}$. Also, a bias circuit for the device was designed in the module. The measured return loss and frequency response show that the modulator module observes the characteristics of a filter without the need of a further tuning process.

  • PDF

Computer simulation for dynamic wheel loads of heavy vehicles

  • Kawatani, Mitsuo;Kim, Chul-Woo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.409-428
    • /
    • 2001
  • The characteristics of dynamic wheel loads of heavy vehicles running on bridge and rigid surface are investigated by using three-dimensional analytical model. The simulated dynamic wheel loads of vehicles are compared with the experimental results carried out by Road-Vehicles Research Institute of Netherlands Organization for Applied Scientific Research (TNO) to verify the validity of the analytical model. Also another comparison of the analytical result with the experimental one for Umeda Entrance Bridge of Hanshin Expressway in Osaka, Japan, is presented in this study. The agreement between the analytical and experimental results is satisfactory and encouraging the use of the analytical model in practice. Parametric study shows that the dynamic increment factor (DIF) of the bridge and RMS values of dynamic wheel loads are fluctuated according to vehicle speeds and vehicle types as well as roadway roughness conditions. Moreover, there exist strong dominant frequency resemblance between bounce motion of vehicle and bridge response as well as those relations between RMS values of dynamic wheel loads and dynamic increment factor (DIF) of bridges.

Elastodyamic analysis of torsion of shaft of revolution by line-loaded integral equation method

  • Yun, Tian Quan
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.457-466
    • /
    • 1998
  • The dynamic response of an elastic torsion shaft of revolution is analysed by the Line-Loaded Integral Equation Method (LLIEM). A "Dynamic Point Ring Couple" (DPRC) is used as a fictitious fundamental load and is distributed in an elastic space along the axis of the shaft outside the shaft occupation. According to the boundary condition, our problem is reduced to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a 2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM), for steady periodically varied loading. Numerical example of a shaft with quadratic generator under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are mentioned.

Hygrothermal effects on the vibration and stability of an initially stressed laminated plate

  • Wang, Hai;Chen, Chun-Sheng;Fung, Chin-Ping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1041-1061
    • /
    • 2015
  • The influence of hygrothermal effects on the vibration frequency and buckling load of a shear deformable composite plate with arbitrary initial stresses was investigated. The governing equations of the effects of humid, thermal and initial stresses are established using the variational method. The material properties of the composite plate are affected by both temperature and moisture. The initial stress is taken to be a combination of uniaxial load and pure bending in a hygrothermal environment. The influence of various parameters, such as the fiber volume fraction, temperature, moisture concentration, length/thickness ratios, initial stresses and bending stress ratio on the vibration and stability of the response of a laminated plate are studied in detail. The behavior of vibration and stability are sensitive to temperature, moisture concentration, fiber volume fraction and initial stresses.

Damage observability, localization and assessment based on eigenfrequencies and eigenvectors curvatures

  • Ciambella, Jacopo;Vestroni, Fabrizio;Vidoli, Stefano
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.191-204
    • /
    • 2011
  • A technique for damage localization and assessment based on measurements of both eigenvectors curvatures and eigenfrequencies is proposed. The procedure is based on two successive steps: a model independent localization, based on changes of modal curvatures, and the solution of a one-dimensional minimization problem to evaluate damage intensity. The observability properties of damage parameters is discussed and, accordingly, a suitable change of coordinates is introduced. The proposed technique is illustrated with reference to a cantilever Euler beam endowed with a set of piezoelectric transducers. To assess the robustness of the algorithm, a parametric study of the identification errors with respect to the number of transducers and to the number of considered modal quantities is carried out with both clean and noise-corrupted data.

Swell description for Bonga offshore Nigeria location

  • Olugbenga, Akinsanya Akinyemi;Gudmestad, Ove Tobias;Agbakwuru, Jasper
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.345-369
    • /
    • 2017
  • The ocean environment offshore West Africa is considered to be mild. However, the generated swell from distant North and South Atlantic during austral winter and summer can reach high wave amplitudes with relatively low wave periods or low wave amplitudes with long wave periods, the later can be a crucial scenario to consider when the assessment of vessel resonance is of importance. Most offshore operations, which include offshore drilling, and installation in West Africa, are carried out from floating systems. The response of these systems and performance are governed by characteristics, such as amplitude and frequency of the wave and swell seas. It is therefore important to fully understand the sea conditions offshore Nigeria. This study covers the description of the swell sea offshore Nigeria using Bonga offshore wave measurements collected from the directional wave-rider (DWR), positioned at the Bonga site off the coast of Nigeria.

Vibration analysis of a beam on a nonlinear elastic foundation

  • Karahan, M.M. Fatih;Pakdemirli, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • Nonlinear vibrations of an Euler-Bernoulli beam resting on a nonlinear elastic foundation are discussed. In search of approximate analytical solutions, the classical multiple scales (MS) and the multiple scales Lindstedt Poincare (MSLP) methods are used. The case of primary resonance is investigated. Amplitude and phase modulation equations are obtained. Steady state solutions are considered. Frequency response curves obtained by both methods are contrasted with each other with respect to the effect of various physical parameters. For weakly nonlinear systems, MS and MSLP solutions are in good agreement. For strong hardening nonlinearities, MSLP solutions exhibit the usual jump phenomena whereas MS solutions are not reliable producing backward curves which are unphysical.