• Title/Summary/Keyword: frequency-phase method

Search Result 1,647, Processing Time 0.023 seconds

A Study on Optimal Design of Capacitance for Active Power Decoupling Circuits (능동 전력 디커플링 회로의 커패시턴스 최적 설계에 관한 연구)

  • Baek, Ki-Ho;Park, Sung-Min;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Active power decoupling circuits have emerged to eliminate the inherent second-order ripple power in a single-phase power conversion system. This study proposes a design method to determine the optimal capacitance for active power decoupling circuits to achieve high power density. Minimum capacitance is derived by analyzing ripple power in a passive power decoupling circuit, a buck-type circuit, and a capacitor-split-type circuit. Double-frequency ripple power decoupling capabilities are also analyzed in three decoupling circuits under a 3.3 kW load condition for a battery charger application. To verify the proposed design method, the performance of the three decoupling circuits with the derived minimum capacitance is compared and analyzed through the results of MATLAB -Simulink and hardware-in-the-loop simulations.

Analysis of DDS Sampling Method and Harmonic Composition

  • Zhi-lai Zhang;Shao-jun Jiang;Li-li Liang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Through theoretical proof and algorithm design, this paper numerically demonstrates that the three sampling methods of DDS are equivalent in amplitude-frequency characteristics. Depending on theoretical analysis, the article obtains the conclusion that 2 points are optimal when sampling at 2, 3, and 4 points. Built on the data results, this paper obtains the fractional form of the amplitude and phase of the DDS sampled signal; in addition, this paper also obtains the design parameters of the DDS post-stage filter. It also gives a control method for the calculation error when addressing this issue.

Characteristics Analysis of RPV and AFD for Anti-Islanding in Active Method (단독운전방지를 위한 능동 방식 중 AFD 및 RPV에 대한 특성해석)

  • Choe, Gyu-Ha;D, Bayasgalan;Lee, Young-Jin;Han, Dong-Ha;Jeong, Byong-Hwan;Kim, Hong-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.160-167
    • /
    • 2009
  • To detect islanding mode when the grid is being tripped is a major safety issue in the Utility Interactive Photo Voltaic (UIPV) system. In this paper, analytical design method is suggested for AFD & RPV method under IEEE 929-2000 recommended islanding test condition. We have discussed that there is a same point. we injected reactive component of the current by AFD & RPV methods, but the current reference generated is other waveform. Possible if amount of reactive components in this methods are same each method, there is happened same rates frequency variation. To verify the validity of the analytical comparison, this paper presents simulation and experimental results from single phase, 3[kW] inverter for the transformerless UIPV system.

Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method (Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법)

  • Han, Yong-Hee;Kim, Tae-Hyung;Chun, Song-I;Kim, Dong-Hyeuk;Lee, Kwang-Sig;Eun, Choong-Ki;Jun, Jae-Ryang;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

  • PDF

The Ground Impedance Modeling using pattern Search Method for Neutral Hormonic Analysis (Pattern Search 법을 이용한 중성선 고조파 해석용 접지 임피던스 모델링)

  • 백승현;김경철;최종기;이일무;백남웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.181-187
    • /
    • 2004
  • With the proliferation of nonlinear loads, high neutral harmonic currents in three-phase four-wire distribution system have been observed. It has been known that the ground impedance has an effect on the neutral currents of a system which operates with harmonics present. On-site measurements of harmonic currents and voltages according to the fall-of-potential method under case study system were made and the ground impedance modeling using the pattern search method for the harmonic analysis was developed The ground impedance model obtained by the proposed method was compared with the frequency characteristics by field tests and has shown appropriate results, and would be applicable to evaluate the harmonic and transient response characteristics of the ground system.

The Position Control of DC Motor using the System Modeling based on the DFT (DFT 기반의 시스템 모델링을 이용한 DC Motor의 위치제어)

  • Ahn, Hyun-Jin;Shim, Kwan-Shik;Lim, Young-Cheol;Nam, Hae-Kon;Kim, Gwang-Heon;Kim, Eui-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.542-548
    • /
    • 2012
  • This study presents a new method of system modeling by using the Discrete Fourier Transform for the position control system of DC Motor. And the proposed method is similar to the method of System Identification by analysis of correlation of the measured input-output data. The measured output signals are transformed to the frequency domain using DFT. The Fourier Spectrum of the transformed signals is used for knowing to the feature of having an important effect on the system. And transfer function of the second order system is estimated by the dominant parameter which is computed in the magnitude and the phase of Fourier spectrum of the transformed signals. In addition, the output signal includes the unique feature of system. So, although the basic parameter of the system is unknown for us, the proposed method has an advantage to system modeling. And the controller is easily designed by the estimated transfer function. Thus, in this paper, the proposed method is applied to the system modeling for the position control system of DC Motor and the PD-controller is designed by the estimated model. And the efficiency and the reliability of the proposed method are verified by the experimental result.

LCL Filter Design Method for Grid-Connected PWM-VSC

  • Majic, Goran;Despalatovic, Marin;Terzic, Bozo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1945-1954
    • /
    • 2017
  • In recent years, several LCL filter design methods for different converter topologies have been published, many of which use analytical expressions to calculate the ideal converter AC voltage harmonic spectrum. This paper presents the LCL filter design methodology but the focus is on presentation and validation of the non-iterative filter design method for a grid-connected three-phase two-level PWM-VSC. The developed method can be adapted for different converter topologies and PWM algorithms. Furthermore, as a starting point for the design procedure, only the range of PWM carrier frequencies is required instead of an exact value. System nonlinearities, usually omitted from analysis have a significant influence on VSC AC voltage harmonic spectrum. In order to achieve better accuracy of the proposed procedure, the system nonlinear model is incorporated into the method. Optimal filter parameters are determined using the novel cost function based on higher frequency losses of the filter. An example of LCL filter design for a 40 kVA grid-connected PWM-VSC has been presented. Obtained results have been used to construct the corresponding laboratory setup and measurements have been performed to verify the proposed method.

Measurement of Normal Incidence Surface Impedance of Absorbing Materials Using the Improved Beamforming Method in a Free Field (자유 음장 조건에서 개선된 빔형성 방법을 이용한 흡음재의 수직 입사 표면 임피던스 측정)

  • Shin, Chang-Woo;Sun, Jong-Choen;Kang, Yeon-June;Paik, Soon-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.598-605
    • /
    • 2008
  • An improved beamforming method is proposed to measure the surface impedance of absorbing materials in a free field. It is possible to estimate the surface impedance by decomposing measured signals into incident and reflected signals by using the spatial filter matrix of the beamforming method. Wavelet do-noising techniques which reduce the white Gaussian noise are applied to improve the results. Phase calibration method is also used to improve the results of the measured surface impedance in a low frequency range. The results of the normal incidence experiments that are performed in a semi-anechoic chamber are verified by comparing with those of the standard test method that is presented in ASTM E1050. The proposed method is found to be reliable to measure the surface impedance for frequencies higher than 400 Hz.

A Detection Method for An OFDM Signal Distorted by I/Q Imbalance (I/Q 불균형에 의하여 왜곡된 OFDM 신호의 검출방식)

  • Park Kyung-won;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.37-45
    • /
    • 2005
  • In this paper, after analyzing the effect of I/Q imbalance in an OFDM system, the detection method of an OFDM signal distorted by I/Q imbalance is proposed. Also, the channel estimation and the pilot symbol design scheme are proposed for using the proposed detection method. Since I/Q imbalance in an OFDM system degrades the SIR and the BER(Bit Error Ratio) performance, the robust detection method is required for an OFDM system. the proposed detection method can effectively suppress the interference caused by I/Q imbalance using characteristics of an OFDM signal differently from the conventional method, and results in improving the SIR of a desired OFDM signal.

Active Damping Method Using Grid-Side Current Feedback for Active Power Filters with LCL Filters

  • Tang, Shiying;Peng, Li;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • LCL filters installed at converter outputs offer a higher harmonic attenuation than L filters. However, as a three order resonant circuit, it is difficult to stabilize and has a risk of oscillating with the power grid. Therefore, careful design is required to damp LCL resonance. Compared to a passive damping method, an active damping method is a more attractive solution for this problem, since it avoids extra power losses. In this paper, the damping capabilities of capacitor current, capacitor voltage, and grid-side current feedback methods, are analyzed under the discrete-time state-space model. Theoretical analysis shows that the grid-side current feedback method is more suitable for use in active power filters, because it can damp LCL resonance more effectively than the other two methods when the ratio of the resonance and the control frequency is between 0.225 and 0.325. Furthermore, since there is no need for extra sensors for additional states measurements, this method provides a cost-efficient solution. To support the theoretical analysis, the proposed method is tested on a 7-kVA single-phase shunt active power filter.