• Title/Summary/Keyword: frequency-dependent source separation

Search Result 3, Processing Time 0.026 seconds

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

Large-Scale Structure of Leading-Edge Separation Bbubble with Local Forcing (국소교란이 가해지는 박리기포의 대형구조)

  • 김유익;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1134-1147
    • /
    • 1995
  • POD (proper orthogonal decomposition) is applied to turbulent leading-edge separation bubble to extract coherent structures. A two-dimensional leading-edge separation bubble is simulated by discrete-vortex method, where a time-dependent source forcing is incorporated. Based on the wealth of numerical data, POD is applied in a range of the forcing amplitude ( $A_{o}$ = 0, 0.5, 1.0 and 1.5) and forcing frequency (0 .leq. $f_{F}$H/ $U_{\infty}$.leq. 0.3). It is demonstrated that the structures of POD have noticeable changes with local forcings. In an effort to investigate the mechanism of decreasing reattachment length, dynamic behaviors of the expansion coefficients and contributions of the eigenfunctions of POD are scrutinized. As the forcing amplitude increases, the large-scale vortex structures are formed near the forcing amplitude increases, the large-scale vortex structures are formed near the separation point and the flow structures become more organized and more regular, accompanying with the reduction of reattachment length. By further inverstigation of POD global entropy, it is seen that the reattachment length is closely linked to the degree of organization of the flow structures.es.s.

Non-uniform Linear Microphone Array Based Source Separation for Conversion from Channel-based to Object-based Audio Content (채널 기반에서 객체 기반의 오디오 콘텐츠로의 변환을 위한 비균등 선형 마이크로폰 어레이 기반의 음원분리 방법)

  • Chun, Chan Jun;Kim, Hong Kook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.169-179
    • /
    • 2016
  • Recently, MPEG-H has been standardizing for a multimedia coder in UHDTV (Ultra-High-Definition TV). Thus, the demand for not only channel-based audio contents but also object-based audio contents is more increasing, which results in developing a new technique of converting channel-based audio contents to object-based ones. In this paper, a non-uniform linear microphone array based source separation method is proposed for realizing such conversion. The proposed method first analyzes the arrival time differences of input audio sources to each of the microphones, and the spectral magnitudes of each sound source are estimated at the horizontal directions based on the analyzed time differences. In order to demonstrate the effectiveness of the proposed method, objective performance measures of the proposed method are compared with those of conventional methods such as an MVDR (Minimum Variance Distortionless Response) beamformer and an ICA (Independent Component Analysis) method. As a result, it is shown that the proposed separation method has better separation performance than the conventional separation methods.