• Title/Summary/Keyword: frequency-based method

Search Result 6,115, Processing Time 0.033 seconds

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.

Experimental Study on Power Flow Analysis of Vibration of an Automobile Door (자동차 도어 진동의 파워흐름해석에 대한 실험적 연구)

  • Kil, H.G.;Lee, Y.H.;Lee, G.H.;Hwang, S.G.;Hong, S.Y.;Park, Y.H.;Seo, J.K.;Chae, G.S.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.782-785
    • /
    • 2006
  • The Power Flow Analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency range. In this paper, Power Flow Finite Element Method (PFFEM) based on PFA has been used to predict the vibration of an automobile door. The predicted results for the frequency response function of the door have been compared with corresponding experimental results. In the experiment, the automobile door has been divided into several subsystems and the loss factor of each subsystem has been measured. The input mobility at a source point has been also measured. The data for the loss factors and the input mobility have been used as the input data to predict the vibration of the automobile door with PFFEM. The frequency response functions have been measured over the surface of the door. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFFEM could be an effective tool to predict the structural vibration.

  • PDF

The Derivation of the Frequency Formulae from the Basin Characteristics (유역특성으로부터 확률홍수량의 유도에 관한 연구)

  • 양동율;고재웅
    • Water for future
    • /
    • v.14 no.3
    • /
    • pp.37-46
    • /
    • 1981
  • The purpose of this paper is to provide a method of estimating the magnitude and frequency of floods on five major streams in Korea such as the Han, the naktong, the Geum, the Seomjin and the Yeongsan. Derivation of the flood frequency formulae is based on the multiple correlation method. For each gaging station in the region, flood frequency curves are drawn by GumbelChow and Weibull plot. where 24 gaging stations are selected for this study. After the station flood-frequency cruves have been prepared, discharges are read at selected recurrence intervals. Each set of discharges is then correlated with basin parameters, using regression equation. The basin parameters that are considered include drainage area, length of main stream, shape facotr, mean basin slope and main channel slope.

  • PDF

The Relationships between Abnormal Return, Trading Volume Activity and Trading Frequency Activity during the COVID-19 in Indonesia

  • SAPUTRA G, Enrico Fernanda;PULUNGAN, Nur Aisyah Febrianti;SUBIYANTO, Bambang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.737-745
    • /
    • 2021
  • This study aims to determine whether there are differences in the average abnormal return, trading volume activity, and trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of the coronavirus (COVID-19) in Indonesia. The sample was selected using a purposive sampling method and collected as many as nine pharmaceutical companies listed on the Indonesia Stock Exchange during 2019-2020. The data used in this study were secondary data in the form of daily data on stock closing prices, Composite Stock Price Index (IHSG), stock volume trading, number of shares outstanding, and stock trading frequency. This study was an event study with an observation period of 14 days, namely seven days before and seven days after the announcement of the coronavirus's first positive case in Indonesia. Hypothesis testing employed the paired sample t-test method. Based on the results, it was found that there was no difference in the average abnormal return of pharmaceutical stocks before and after the announcement of the first case of COVID-19. However, there was a difference in the average trading volume activity and the average trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of COVID-19.

A pooled Bayes test of independence using restricted pooling model for contingency tables from small areas

  • Jo, Aejeong;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.547-559
    • /
    • 2022
  • For a chi-squared test, which is a statistical method used to test the independence of a contingency table of two factors, the expected frequency of each cell must be greater than 5. The percentage of cells with an expected frequency below 5 must be less than 20% of all cells. However, there are many cases in which the regional expected frequency is below 5 in general small area studies. Even in large-scale surveys, it is difficult to forecast the expected frequency to be greater than 5 when there is small area estimation with subgroup analysis. Another statistical method to test independence is to use the Bayes factor, but since there is a high ratio of data dependency due to the nature of the Bayesian approach, the low expected frequency tends to decrease the precision of the test results. To overcome these limitations, we will borrow information from areas with similar characteristics and pool the data statistically to propose a pooled Bayes test of independence in target areas. Jo et al. (2021) suggested hierarchical Bayesian pooling models for small area estimation of categorical data, and we will introduce the pooled Bayes factors calculated by expanding their restricted pooling model. We applied the pooled Bayes factors using bone mineral density and body mass index data from the Third National Health and Nutrition Examination Survey conducted in the United States and compared them with chi-squared tests often used in tests of independence.

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

A New NDT Technique on Tunnel Concrete Lining (터널 콘크리트 라이닝의 새로운 비파괴 검사기법)

  • 이인모;전일수;조계춘;이주공
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.249-256
    • /
    • 2003
  • To investigate the safety and stability of the concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing method of NDT techniques has based on the Fourier analysis. However, the application of Fourier analysis to analyze recorded signal shows results only in frequency domain, it is not enough to analyze transient waves precisely. In this study, a new NDT technique .using the wavelet theory was employed for the analysis of non-stationary wave propagation induced by mechanical impact in the concrete lining. The wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of wavelet transform as a time- frequency analysis tool, model experiments have been conducted on the concrete lining model. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was concluded that Wavelet transform was an effective tool for the experimental analysis of dispersive waves in concrete structures.

  • PDF