• Title/Summary/Keyword: frequency-based method

Search Result 6,115, Processing Time 0.035 seconds

NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL (가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구)

  • Jung, J.H.;Lee, C.Y.;Yoon, H.S.;Kim, H.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

Frequency and Subcarrier Reuse Partitioning for FH-OFDMA Cellular Systems

  • Lee, Yeonwoo;Kim, Kyung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.601-609
    • /
    • 2013
  • One of the most serious factors constraining the next generation cellular mobile consumer communication systems will be the severe co-channel interference experienced at the cell edge. Such a capacity-degrading impairment combined with the limited available spectrum resource makes it essential to develop more spectrally efficient solutions to enhance the system performance and enrich the mobile user's application services. This paper proposes a unique hybrid method of frequency hopping (FH) and subcarrier-reuse-partitioning that can maximize the system capacity by efficiently utilizing the available spectrum while at the same time reduce the co-channel interference effect. The main feature of the proposed method is that it applies an optimal combination of different frequency reuse factors (FRF) and FH-subcarrier allocation patterns into the partitioned cell regions. From the simulation results, it is shown that the proposed method can achieve the optimum number of subcarrier subsets according to the frequency-reuse distance and results in better performance than the fixed FRF methods, for a given partitioning arrangement. The results are presented in the context of both blocking probability and BER performances. It will also be shown how the proposed scheme is well suited to FH-OFDMA based cellular systems aiming at low co-channel interference performance and optimized number of subcarriers.

Lumped Parameter Model for the Nonlinear Seismic Analysis of the Coupled Dam-Reservior-Soil System (댐-호소-지반 계의 비선형 지진응답해석을 위한 집중변수모델)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.267-274
    • /
    • 1999
  • Since the seismic response of dams can be strongly influenced by the dam-reservior interaction in needs to be taken into account in the seismic design of dams. In general a substructure method is employed to solve the dam-reservoir interaction problem in which the dam body is modeled with finite elements and the infinite region of a reservoir using a transmitting boundary. When the water is modeled as a compressible fluid the equation is formulated in frequency domain. But nonlinear behavior of dam body cannot be studied easily in the frequency domain method. In this study time domain formulation of the dam-reservoir-soil interaction is proposed based onthe lumped parameter modeling of the reservoir region, The frequency dependent dynamic-stiffness coefficients of the reservoir are converted into frequency independent lumped-parameters such as masses dampers and springs. The soil-structure interactionis modeled using lumped parameters in similar way. the ground is assumed as a visco-elastic stratum on the rigid bedrock. The dynamic stiffnesses of the rigid surface foundation are calculated using the hyperelement method and are converted into lumped parameters. The application example demonstrated that the lumped parameter model gives almost identical results with the frequency domain formulation.

  • PDF

A Computational Model for a Neuronal Membrane Considering the Extremely Low Frequency and Mobile Phone Frequency Electromagnetic Field Effect (극 저주파 및 휴대전화 전자파 환경 변수를 고려한 새포막 활동 전위 모형)

  • 서영준;이은주;안재목;이용업;황태금;이재선;서정선
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.347-354
    • /
    • 2003
  • In this paper, a computational method of an action potential including the effect of extremely low frequency and mobile phone (external) electromagnetic fields is Proposed. The method is based on the Hodgkin and Huxley model, applies the effect of the electromagnetic fields on the action Potential in terms of a binding factor into the injection current of the model, and calculates the Strength-Duration curve from numerical experiments for a frequency range of electromagnetic fields. In the numerical experiments, the coupled ordinary differential equations of the action potential and the state variables are solved solf-consistently by using Runge-Kutta Fehlberg method. The range of the frequency considered is from 1Hz through 100Hz and of 900MHz, which is specific for a mobile Phone. The Strength-Duration curves resulted showed good agreements with the equation suggested by Hodgkin and Huxley.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer

  • Ruwei Ma;Zhexuan Zhu;Chunxiang Li;Liyuan Cao
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.461-475
    • /
    • 2024
  • A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.

Post-processing Technique Based on POCS Using EZW (EZW를 이용한 POCS 기반의 후처리 기법)

  • Kim, Hyo-Kak;Kwon, Goo-Rak;Kim, Yoon;Ko, Sung-Jea
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.427-430
    • /
    • 2005
  • In this paper, we propose a new post-processing method, based on the theory of the projection onto convex sets (POCS) to reduce the blocking artifacts in decoded images. We propose a new smoothness constraint set (SCS) and its projection operator in the wavelet transform (WT) domain to remove unnecessary high-frequency components caused by blocking artifacts. We also propose a new method to find and preserve the original high frequency components of the image edge. Experimental results show that the proposed method can not only achieve a significantly enhanced subjective quality, but also have the PSNR improvement in the output image.

  • PDF

An Identification Method for Complex-Valued Material Properties of Piezoelectric Ceramics Using Nonlinear Optimization Technique (비선형 최적화 기법을 이용한 압전 세라믹의 복소 재료 정수 규명)

  • 조치영;서희선;김대환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.298-305
    • /
    • 1996
  • The common practice for the identification of piezoelectric properties is based on the use of immittance behavior of a resonator with a certain geometry and poling direction. In this paper, a new method is suggested to identify the complex-valued piezoelectric material constants. This method is based on the minimization of differences between the analytical immittance and the experimental measurement of resonator. Non-linear minimization problems are formulated to find out the unknown properties relevant to the resonators. The immittance data used for identification are measured at a number of frequencies which cover the vicinity of resonance frequency and the low frequency region. To illustrate the proposed technique, the complex-valued coefficients are identified for a typical PZT4 ceramic composition.

  • PDF

Study on Method of Crack Detection of L-beams with Coupled Vibration (연성진동하는 L형 단면 보의 크랙 검출 방법에 대한 연구)

  • Son, In-Soo;Cho, Jeong-Rae;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.78-86
    • /
    • 2010
  • This paper aims to investigate the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations. In addition, a theoretical method for detection of the crack position and size in a cantilever L-beams is presented based on natural frequencies. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using extended Hamilton's Principle. The dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. In order to detect the crack of L-beams, the effect of spring coefficients for bending moment and torsional force is included. In this study, the differences between the actual data and predicted positions and sizes of crack are less than 0.5% and 6.7% respectively.