• Title/Summary/Keyword: frequency shifts

Search Result 184, Processing Time 0.023 seconds

Intermolecular Hydrogen Bond between Phenol and DMAs (Phenol과 DMA 간의 수소결합)

  • Kim, Pock-Hye;Lee, Ik-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.15-17
    • /
    • 1966
  • Intermolecular hydrogen-bonding between phenol and N,N'-dimethylanilines (DMA) has been studied by infrared spectrophotometry. Results show that DMA acts as n-and ${\pi}$-donor although n-complex predominates. O-H stretching frequency shifts (${\Delta}{\nu}$) were proportional to basicitys of DMA and excellent linearity was observed between ${\Delta}{\nu}$ and the Hammett substituent constant, ${\sigma}$.

  • PDF

Frequency Tuning of Unimorph Cantilever for Piezoelectric Energy Harvesting (주파수 조정에 따른 에너지 하베스팅용 압전 캔틸레버의 특성)

  • Kim, Hyung-Chan;Song, Hyun-Cheol;Jeong, Dae-Yong;Kim, Hyun-Jai;Yoon, Seok-Jin;Ju, Byeong-Kwon
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.660-663
    • /
    • 2007
  • Piezoelectric energy harvesting from our surrounding vibration has been studied for driving the wireless sensor node. To change the vibration energy into the electric-energy efficiently, the natural frequency of cantilever needs to be adjusted to that of a vibration source. When adding 6.80g mass on the end of the fabricated cantilever, a natural frequency shifts from 136 Hz into 49.5 Hz. In addition, electro-mechanical coupling factor increased from 10.20% to 11.90% and resulted in the 1.18 times increase of maximum output power.

Defect evaluations of weld zone in rails considering phase space-frequency demain (위상공간-주파수 영역을 고려한 레일 용접부의 결함 평가)

  • 윤인식;권성태;장영권;정우현;이찬석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.21-30
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the phase space-frequency domain. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objectives in this study are features of time domain and frequency domain. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimension. Proposed phase space-frequency domain method in this study can integrity evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

Improved Physical Layer Implementation of VANETs

  • Khan, Latif Ullah;Khattak, M. Irfan;Khan, Naeem;Khan, Atif Sardar;Shafi, M.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • Vehicular Ad-hoc Networks (VANETs) are comprised of wireless mobile nodes characterized by a randomly changing topology, high mobility, availability of geographic position, and fewer power constraints. Orthogonal Frequency Division Multiplexing (OFDM) is a promising candidate for the physical layer of VANET because of the inherent characteristics of the spectral efficiency and robustness to channel impairments. The susceptibility of OFDM to Inter-Carrier Interference (ICI) is a challenging issue. The high mobility of nodes in VANET causes higher Doppler shifts, which results in ICI in the OFDM system. In this paper, a frequency domain com-btype channel estimation was used to cancel out ICI. The channel frequency response at the pilot tones was estimated using a Least Square (LS) estimator. An efficient interpolation technique is required to estimate the channel at the data tones with low interpolation error. This paper proposes a robust interpolation technique to estimate the channel frequency response at the data subcarriers. The channel induced noise tended to degrade the Bit Error Rate (BER) performance of the system. Parallel concatenated Convolutional codes were used for error correction. At the decoding end, different decoding algorithms were considered for the component decoders of the iterative Turbo decoder. A performance and complexity comparison among the various decoding algorithms was also carried out.

Copper-Titanium Composite Thin Films Grown by Combinatorial Radio Frequency Sputtering for High-Performance Surface Acoustic Wave - Interdigital Transducer Electrodes

  • Jae-Cheol Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.9
    • /
    • pp.432-438
    • /
    • 2024
  • Cu-Ti thin films were fabricated using a combinatorial sputtering system to realize highly sensitive surface acoustic wave (SAW) devices. The Cu-Ti sample library was grown with various chemical compositions and electrical resistivity, providing important information for selecting the most suitable materials for SAW devices. Considering that acoustic waves generated from piezoelectric materials are significantly affected by the resistivity and density of interdigital transducer (IDT) electrodes, three types of Cu-Ti thin films with different Cu contents were fabricated. The thickness of the Cu-Ti thin films used in the SAW-IDT electrode was fixed at 150 nm. As the Cu content of the Cu-Ti films was increased from 31.2 to 71.3 at%, the resistivity decreased from 10.5 to 5.8 × 10-5 ohm-cm, and the density increased from 5.5 to 7.3 g/cm3, respectively. A SAW device composed of Cu-Ti IDT electrodes resonated at exactly 143 MHz without frequency shifts, but the full width at half maximum (FWHM) values of the resonant frequency gradually increased as the Cu content increased. This means that although the increase in Cu content in the Cu-Ti thin film helps to improve the electrical properties of the IDT electrode, the increased density of the IDT electrode deteriorates the acoustic performance of SAW devices.

Proper frequency band as EMG fatigue indices of biceps femoris muscles during treadmill walking (드레트밀 보행시 대퇴이두근의 EMG 근피로지수로서 적당한 주파수 대역)

  • Jongchil Won;Kiyoung Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.141-145
    • /
    • 2024
  • Because of muscle fatigue, motor unit recruitment and firing rates decrease and EMG power spectrum shifts toward lower frequencies as spectral compression which represented by a falling shift in the median frequency. However, changes of this frequency shows relatively less than those of the magnitudes of the low frequency band. This paper aims to examine the moderate ranges of the frequency bands in the existed ones as spectral fatigue indices of biceps femoris muscle. Twelve subjects participate in this experiment, and EMG signals are measured from these muscles during treadmill walking on the speed of 4.5 km/h. ANOVA analysis is used to compare changes of the low and high frequency band with reference to those of median frequency. Experimental results demonstrate that the low frequency band 25-82 Hz and the high frequency band 142-300 Hz could be appropriate for spectral fatigue indices of biceps femoris muscles.

The Characteristics of DC-shift in Hybrid Rocket (하이브리드 로켓에서의 DC-shift 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.456-466
    • /
    • 2010
  • Typical combustion instability such as DC-Shift found in the hybrid rocket motor is characterized by non-linearity. DC-Shift can occur in two different realizations. One is so-called a positive shift of measured DC voltage where the pressure increase suddenly. The other is a negative shift where the pressure drops abruptly. In the present work, specifically the negative DC-Shift was investigated to analyze the effect of oxidizer flow condition and the resonance between fundamental frequency and other ones, such as Helmholtz frequency, and acoustic frequency. Results show a peak frequency of several hundreds HZ shifts as combustion proceeds. A negative DC-shift was found as the result of phase cancellation between two dominant frequency, combustion frequency and flow related frequency. Still is it required to study further to identify the change of dominance of frequency during the combustion.

Dietary Behavior and Food Frequency of Females in Their Twenties Working Shifts at Coffee Shops in Seoul (서울지역 20대 커피전문점 교대근무 여성의 식행동 및 식품섭취빈도 비교)

  • Kim, Soo-Jin;Lee, Seung-Lim;Om, Ae-Son
    • Culinary science and hospitality research
    • /
    • v.19 no.1
    • /
    • pp.215-229
    • /
    • 2013
  • This study compared and examined the dietary behavior and food frequency of 100 female workers in their 20s who work night and day shifts at take-out coffee shops and 100 female office workers. The results of the study can be summarized as the following. The experimental group showed lower rates of income, tenure of office, sleeping hours, and frequency of exercise(p<0.001), and higher rates of gastric and intestinal illnesses, weight fluctuates, and smoking(p<0.001) than the control group. More than 83% of the experimental group(p<0.001) answered that they eat alone(p<0.001). The experimental group showed lower rates of regularity of meal and balanced diet(p<0.001), and higher rates of overeating(p<0.01), skipping breakfast and eating late-at-night(p<0.001) than the control group. The experimental group consumed less frequently rice, meat, fish, egg, bean, kimchi, vegetables and fruit(p<0.001), and more frequently noodles, bread, cereal, seaweed, milk, coffee and alcohol(p<0.001) than the control group.

  • PDF

The Relative Position Estimate of the Moving Distributed Sources Using the Doppler Scanning Technique (도플러 스캐닝 기법을 이용한 이동하는 다중 음원의 상대 위치 추적 기법)

  • 노용주;윤종락;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.446-454
    • /
    • 2002
  • This paper presents the Doppler Scanning technique which enables us to detect the relative positions of moving distributed sources using Doppler frequency shift estimate when the moving source consists of distributed sources with different signature frequencies. Doppler frequency shifts of characteristic frequencies of machinery noise sources such as ship's generator and propeller, with tine along CPA (Closest Point of Approach of moving source) are unique, and can be functioned with respect to each source position. Therefore, this technique can be applied to estimate the relative geometrical positions between machinery noise sources. The Extended Kalman Filter (EKF) which has a high frequency resolution with high time resolution, is adopted for improving accuracy of Doppler frequency shift estimate geometric resolution of machinery positions since machinery noise sources show in general low frequency band characteristics with limited spacial distance. The performance of the technique is examined by the numerical simulations and is verified by the experiment using loudspeaker sources on the roof of the car.