• Title/Summary/Keyword: frequency selective surfaces

Search Result 19, Processing Time 0.023 seconds

Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns

  • Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1360-1364
    • /
    • 2014
  • In this paper, RCS characteristics on defect pattern of crossed dipole slot FSS having a finite size have been analyzed. To analyze RCS, we applied the electric field integral equation analysis which applies BiCGSTab algorithm with iterative method and uses RWG basis function. To verify the validity of this paper, RCS of PEC sphere has been compared to the theoretical results and FSSs with defect patterns are fabricated and measured. As defect patterns in FSS, missing one column, missing some elements, and discontinuity in surfaces are simulated and compared with the measurement results. Resonant frequency shifts in pass band and changes in bandwidth are observed. From the results, precisely predicting and designing frequency characteristics over defect patterns are essential when applying FSS structures such as FSS radomes.

Design of the Frequency Selective Surface with Transformation of Linear-to-circular Polarization (원편파 변환 주파수 선택 반사기 설계)

  • Ko, Ji-Whan;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The new periodic array structure or frequency selective surface with polarizers characteristic is proposed. The present structure is constructed with two sheets or FSS material, spaced about one-eight wavelength apart, the dipole element orientations of the two sheets being almost perpendicular to each other. The methods of the spectral domain immittance and MoM are used to analyze electromagnetic scattering from this periodic array structure. To confirm the validity of the polrizer's functions or the new periodic array structure, frequency selective surfaces are fabricated, calculated values for the frequency response of the reflection and transmission loss are compared with measured values. Good correspondence has been observed between them. Good axial ratio has been also observed to be achieved in the proposed structure.

  • PDF

Compact Spatial Triple-Band-Stop Filter for Cellular/PCS/IMT-2000 Systems

  • Kim, Dong-Ho;Yeo, Jun-Ho;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.735-737
    • /
    • 2008
  • We propose a novel spatial multi-band-stop filter using modified multiple loop array elements to block electromagnetic waves or signals of mobile phones in public facilities. It operates at the following frequency bands: Korean cellular (824 MHz to 894 MHz), Personal Communication Service (PCS) (1.75 GHz to 1.87 GHz), and IMT-2000 (1.92 GHz to 2.17 GHz). Two frequency selective surfaces with modified multiple-loop elements are printed on the top and bottom of a pair-glass pane, which is a pair of glass panes with an air gap between them. A modified multiple-loop element with a meander line is used to make the size of the filter compact. The simulated and measured results show good agreement, which confirms the usefulness of the proposed tri-band spatial filter.

  • PDF

Design of the Reconfigurable Frequency Selective Surface for X-Band Applications with Improved Isolation (격리도가 향상된 X-Band 재구성 주파수 선택 표면구조 설계)

  • Lee, In-Gon;Park, Yong-Bae;Chun, Heung-Jae;Kim, Yoon-Jae;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.791-799
    • /
    • 2016
  • This paper presents the design of reconfigurable frequency selective surfaces for X-band bandpass operation with improved isolation. The proposed reconfigurable FSS is composed of a four-legged loaded element, a inductive stub and a bias grid. The PIN diode is located between the four-legged loaded element and the stub, which can control the frequency response of reconfigurable FSS by ON/OFF state. By adjusting the length of the stub, the desired bandpass frequency and the improved isolation between ON and OFF state can be obtained. For validation of simulated results, we have carried out transmission characteristic measurements using rectangular waveguide of WR-90. The measured results are in good agreements with the simulated results.

Design of Frequency Selective Surface with Chessboard Patterns (체스판 형태를 갖는 주파수 선택구조 설계)

  • Lee, In-Gon;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • The frequency selective surfaces(FSSs) with chessboard patterns are proposed and designed for the first time in this paper. We proposed the design parameters like slot and patch size, gap between slots or patches, and dielectric thickness of FSS chessboard unit cell proposed in this paper. Also, we found that the variation of design parameters can be used to control the frequency transmission characteristics like the resonant frequency or bandwidth of FSS. To validate the proposed FSS, we fabricated the proposed FSS with the use of 1.0mm FR4 for the bandpass operation at X-band and measured the transmission characteristics. From the results, the proposed FSS with chessboard type can be widely applied to application of the frequency controllable radome design because we can use the design parameters selectively.

Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface (레이돔 표면에 금속 나노코팅을 적용한 적외선 저피탐 성능특성 연구)

  • Lee, Yongwoo;Chang, Injoong;Nam, Juyeong;Bae, Hyung Mo;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.

Band-Rejected UWB Antenna Using Unit Cells of FSS (FSS 단위 셀을 이용한 대역저지 UWB 안테나)

  • Lee, Chang Yong;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3431-3436
    • /
    • 2013
  • Band-notched ultra-wideband (UWB) antennas using frequency selective surfaces (FSSs) are presented. The proposed antennas utilized the band rejection characteristic of typical FSS unit cells. We loaded the FSS unit cells on the same plane of planar UWB antenna. These antennas are designed to reject the interference from the wireless local area network band, 5.15-5.825 GHz in the UWB band, 3.1-10.6 GHz. The measured peak gains of the proposed antennas are more than 2 dBi at both operation edge and center frequencies, and sufficient to apply for commercial purpose. The antennas are small size and planar shape for the purpose of the small mobile application, and enhanced design freedom by using various existing FSS unit cells.

EBG Resonator Antenna with a Stripline Type FSS Superstrate for PCS-band Base Station Antennas (스트립라인 형태의 주파수 선택적 표면 덮개층을 이용한 PCS대역 기지국용 EBG 공진기 안테나)

  • Yeo, Jun-Ho;Kim, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.15-27
    • /
    • 2008
  • In this paper, an EBG(Electromagnetic BandGap) resonator antenna with a stripline type FSS(Frequency Selective Surface) superstrate for PCS-band base station antennas is proposed. The characteristics of resonant frequency and -3dB bandwidth of a unit cell of a superstrate are first analyzed by varing several design parameters such as a strip width and a unit cell width in order to design an EBG resonator antenna satisfying the required antenna gain and bandwidth for PCS-band base station antennas. Among various unit cell shapes, strip dipole and stripline are considered and their characteristics are compared. It was found that a resonant length of the EBG resonator antenna becomes smaller when the stripline shape is used and the control of the bandwidth is also much easier. By using the unit cell simulation results, planar and cylindrical EBG resonator antennas at PCS-band are designed.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF