• Title/Summary/Keyword: frequency reuse

Search Result 215, Processing Time 0.026 seconds

Downlink Power Allocation for Relay Frequency Reuse (릴레이 주파수재사용을 위한 하향링크 전력 자원 할당)

  • Oh, Chang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.98-104
    • /
    • 2012
  • We consider the optimum power allocation problem for downlink system throughput maximization in a 2 time slotted relay interference channel. Base station (BS) transmits power to Mobile Station (MS) and Relay Station (RS) in time slot 1 (orthogonal channel). In time slot 2, BS and RS transmit power to each MS, while causing cochannel interference to each other. The obtained optimum power allocation scheme allows simultaneous transmissions of BS and RS when the interference level in time slot 2 is low. However, when the interference level is high, RS shuts down its power. Numerical results are provided to support our analysis.

The Comparative Study on the Castability to the Frequency of Reuse with Precious Metal Alloys and Base Metal Alloys widely used in the Production of Partial Denture (국부의치(局部義齒) 제작(製作)에 사용(使用)되는 귀금속합금(貴金屬合金)과 비귀금속합금(非貴金屬合金)의 재(再) 사용(使用) 횟수에 따른 주조성(鑄造性) 비교(比較) 연구(硏究))

  • Chung, Kyung-Pung;Choi, Un-Jae
    • Journal of Technologic Dentistry
    • /
    • v.17 no.1
    • /
    • pp.10-25
    • /
    • 1995
  • The purpose of this study is to get the difference of the castability in the production of partial denture between Precious Metal Alloys and Base Metal Alloys accompanied with the frequency of reuse. As materials for an experiment, we selected Baker-444 and Soo-444 and Soo-sung as Precious Metal Alloys, New Crown and Chrome Cobalt as Base Metal Alloys. And we tired to case all of them seven times. The experimental results were as follows : 1) In the probability of segments, Baker-444 showed 100$\pm$0.00%, Soo-sung 97.24$\pm$1.58%, New Crown 95.63$\pm$4.28%, and Chrome Cobalt 91.03$\pm$7.76%. Consequently, Precious Metal Alloys were decidely superior to Base Metal Alloys in the castability. 2) In the view of the acheived result, burn-out temperature and smocking time had greatly affected the castability. 3) After casting, Precious Metal Alloys were much less than Base Metal Alloys in the quantity of consumption. It made much difference from the the compiled stastics(p<0.01)

  • PDF

Game Theory based Dynamic Spectrum Allocation for Secondary Users in the Cell Edge of Cognitive Radio Networks

  • Jang, Sungjin;Kim, Jongbae;Byun, Jungwon;Shin, Yongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2231-2245
    • /
    • 2014
  • Cognitive Radio (CR) has very promising potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in CR scenarios. This is particularly problematic for deploying CR in cellular networks, when users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse are critical requirements for both PUs and SUs. Further cellular networks require higher cell edge performance, then SUs will meet more challenges than PUs. To solve the performance decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as inter-cell interference mitigated according to SUs' sensing, measurement and interaction in this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge user experience and network performance through distributed pricing calculation and exchange based on game theory. Analytical proof is presented and simulation results show that the proposed scheme achieves high efficiency of spectrum usage and improvement of cell edge SUs' performance.

Transmission Power Minimization with Network Coding for Mobile Terminals in Cellular Relay Networks

  • Du, Guanyao;Xiong, Ke;Li, Dandan;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2098-2117
    • /
    • 2012
  • This paper jointly investigates the bandwidth allocation, transmission strategy and relay positions for two-way transmission aware cellular networks with network coding (NC). Our goal is to minimize the transmission power of mobile terminals (MTs). Consider a cellular system, where multiple MTs exchange information with their common base station, firstly, we propose an efficient bandwidth allocation method and then give a transmission strategy for each MT to determine whether to use relay stations (RSs) for its two-way transmission with the BS or not. To further improve the system performance, the optimal positions of RSs are also jointly discussed. A GA-based algorithm is presented to obtain the optimum positions for RSs. Besides, the impacts of frequency reuse on MT's transmission power and system spectral efficiency (SE) under different number of relays are also discussed in our work. Numerical results show that the proposed NC aware scheme can extend MTs' battery life at least 6% more than traditional method.

Aggressive Subchannel Allocation Algorithm for Optimize Transmission Efficiency Among Users in Multiuser OFDMA System (다중 사용자 OFDMA 시스템에서의 사용자간 전송효율 최적화를 위한 Aggressive Subchannel Allocation 알고리즘)

  • Ko Sang-Jun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.617-626
    • /
    • 2006
  • In this paper, we propose an ASA(Aggressive Subchannel Allocation) algorithm, which is an effective dynamic channel allocation algorithm considering all user's channel state to maximize downlink sector throughput in OFDMA system. We compare an ASA algorithm with Round Robin, ACG(Amplitude Craving Greedy), RCG(Rate Craving Greedy) and GPF(General Proportional Fair) in the 2-tier environment of FRF(Frequency Reuse Factor) 1 and then analyze the performance of each algorithms, through compute simulation. Simulation results show that the proposed ASA algorithm gets 58 %, 190 %, 130 % and 8.5 % better sector throughput compared with the Round Robin, ACG, RCG and GPF respectively.

Reduction of Outage Probability due to Handover by Mitigating Inter-cell Interference in Long-Term Evolution Networks

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin Mohd;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.554-563
    • /
    • 2014
  • The burgeoning growth of real-time applications, such as interactive video and VoIP, places a heavy demand for a high data rate and guarantee of QoS from a network. This is being addressed by fourth generation networks such as Long-Term Evolution (LTE). But, the mobility of user equipment that needs to be handed over to a new evolved node base-station (eNB) while maintaining connectivity with high data rates poses a significant challenge that needs to be addressed. Handover (HO) normally takes place at cell borders, which normally suffers high interference. This inter-cell interference (ICI) can affect HO procedures, as well as reduce throughput. In this paper, soft frequency reuse (SFR) and multiple preparations (MP), so-called SFRAMP, are proposed to provide a seamless and fast handover with high throughput by keeping the ICI low. Simulation results using LTE-Sim show that the outage probability and delay are reduced by 24.4% and 11.9%, respectively, over the hard handover method - quite a significant result.

A Multi-Dimensional Radio Resource Scheduling Scheme for MIMO-OFDM Wireless Systems

  • Li, Lei;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.401-409
    • /
    • 2006
  • Orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) technologies provide additional dimensions of freedom with spectral and spatial resources for radio resource management. Multi-dimensional radio resource management has recently been identified to exploit the full dimensions of freedom for more flexible and efficient utilization of scarce radio spectrum while provide diverse quality of service (QoS) guarantees. In this work, a multi-dimensional radio resource scheduling scheme is proposed to achieve above goals in hybrid orthogonal frequency division multiple access (OFDMA) and space division multiple access (SDMA) systems. Cochannel interference (CCI) introduced by frequency reuse under SDMA is eliminated by frequency division and time division between highly interfered users. This scheme maximizes system throughput subjected to the minimum data rate guarantee. for heterogeneous users and transmit power constraint. By numerical examples, system throughput and fairness superiority of the our scheduling scheme are verified.

Inter-cell DCA Algorithm for Downlink Wireless Communication Systems (하향링크 무선 통신 시스템에서의 Inter-cell DCA 알고리즘)

  • Kim, Hyo-Su;Kim, Dong-Hoi;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.693-701
    • /
    • 2008
  • In OFDMA (Orthogonal Frequency Division Multiple Access) system that frequency reuse factor is 1, as the same channels in the neighborhood cells creates inter-cell co-channel interference which provides a resource underutilization problem, channel allocation schemes to minimize inter-cell interference have been studied. This paper proposes a new CNIR (Carrier to Noise and Interference Ratio)-based distributed Inter-cell DCA (Dynamic Channel Allocation) algorithm in the OFDMA environment with frequency reuse factor of 1. When a channel allocation is requested, if there is not a free channel in home cell or the available free channels in home cell do not satisfy a required threshold value, the proposed Inter-cell DCA algorithm finds CNIR values of available free channels in the neighborhood cells and then allocates a free channel with maximum CNIR value. Through the simulation results, we find that the proposed scheme decreases both new call block rate and forced termination rate due to new call generation at the same time because it increases channel allocation probability.

2-D Large Inverse Transform (16×16, 32×32) for HEVC (High Efficiency Video Coding)

  • Park, Jong-Sik;Nam, Woo-Jin;Han, Seung-Mok;Lee, Seong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 2012
  • This paper proposes a $16{\times}16$ and $32{\times}32$ inverse transform architecture for HEVC (High Efficiency Video Coding). HEVC large transform of $16{\times}16$ and $32{\times}32$ suffers from huge computational complexity. To resolve this problem, we proposed a new large inverse transform architecture based on hardware reuse. The processing element is optimized by exploiting fully recursive and regular butterfly structure. To achieve low area, the processing element is implemented by shifters and adders without multiplier. Implementation of the proposed 2-D inverse transform architecture in 0.18 ${\mu}m$ technology shows about 300 MHz frequency and 287 Kgates area, which can process 4K ($3840{\times}2160$)@ 30 fps image.

High quality reassignment (HQR) scheme for indoor microcell PCS systems (옥내 마이크로셀 개인휴대통신 시스템의 채널할당과 핸드오버를 위한 High quality reassignment 방식)

  • 오준환;홍대형
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.40-49
    • /
    • 1996
  • In this paper, we studied channel assignment and handover schemes for the indoor microcell systems. For efficient frequency spectrum reuse we proposed the high quality reassignment (HQR) scheme. Proposed HQR scheme tries to keep the reuse distances small by monitoring C/I of channels being used. To assign a channel for a new or handove call, the scheme checks C/I of all available channels. Then HQR assigns the channel that has C/I near the threshold value, A_TH. The scheme also checks C/I of ongoing calls and continuously reassigns a new channel when needed. It attempts handover not only when C/I gets below a handover threshold value, HO_TH, but also when C/I becomes above a high quality reassignment threshold, H_TH. The performance of the proposed HQR scheme was analyzed by a computer simulation configuraed. The performance of the scheme was also analyzed for various threshold values selected and the results are presented in this paper. The results show that HQR scheme perfomrs better than the scheme adopted for DECT.

  • PDF